• Title/Summary/Keyword: 지상무인차량

Search Result 61, Processing Time 0.029 seconds

GPS Jamming Resilient Location-based Routing for Unmanned Ground Vehicle Networks (무인 지상 차량 네트워크에서 GPS 재밍에 강인한 위치기반 라우팅)

  • Lee, Jinwoo;Jung, Woo-Sung;Kim, Yong-joo;Ko, Young-Bae;Ham, Jae-Hyun;Choi, Jeung-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.432-440
    • /
    • 2015
  • UGVs(Unmanned Ground Vehicles) are robots that can substitute humans in reconnaissance operations of potentially dangerous and contaminated sites. Currently, there have been active research on utilizing UGVs in military environments. Much resrach has been focused on exploiting the weakness of topology-based routing and instead utilize location-based routing for the networking of UGVs. It is generally assumed that location-based routing methods can fully utilize the location information gained from GPS. However, this may not be possible in tactical environments due to enemy GPS jamming and LOS(Line of Sight) limitations. To solve this problem, we propose a location-based routing scheme utilizing low control message that can calibrate the location information using GPS information as well as location of neighboring UGV, movement direct and speed information. Also utilizing topology-based routing scheme to solve incorrect location information in GPS jamming region.

A Study on Efficiency Improvement for SUGV with a Practical View Point of Non-Functional Requirements (비기능적 요구사항 관점의 소형 무인지상차량 성능 향상 연구)

  • Seo, Jin-Won;Kim, R. Young-Chul;Kim, Jang-Han
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.59-67
    • /
    • 2008
  • In the next near future, the human would like to use the small unmanned ground vehicle(SUGV) on the diverse fields. Specially the world of today is tried to apply with operating the task on very difficult working environments such as some dangerous or unreachable area. To work this task, this vehicle should be guaranteed with the high level of reliability, safety, and performance. In this paper, we propose to focus on not only the functional requirements, but also the non-functional requirements based on software architecture at the design stage for developing the embedded system. Through focusing on the non-functional requirements on this software architecture, we can obtain the design goal of the target system and also show the enhancement of reliability, safety and performance with 'Vtune' performance analysis tool.

Genetic Algorithm Based 3D Environment Local Path Planning for Autonomous Driving of Unmanned Vehicles in Rough Terrain (무인 차량의 험지 자율주행을 위한 유전자 알고리즘 기반 3D 환경 지역 경로계획)

  • Yun, SeungJae;Won, Mooncheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.803-812
    • /
    • 2017
  • This paper proposes a local path planning method for stable autonomous driving in rough terrain. There are various path planning techniques such as candidate paths, star algorithm, and Rapidly-exploring Random Tree algorithms. However, such existing path planning has limitations to reflecting the stability of unmanned ground vehicles. This paper suggest a path planning algorithm that considering the stability of unmanned ground vehicles. The algorithm is based on the genetic algorithm and assumes to have probability based obstacle map and elevation map. The simulation result show that the proposed algorithm can be used for real-time local path planning in rough terrain.

Design and Testing of integrated MEMS GPS/AHRS navigation system (MEMS 센서를 이용한 GPS/AHRS 결합 항법 시스템 설계 및 평가)

  • Hong, Jin-Seok;Kim, Seong-Jung;Jeong, Hak-Yeong;Lee, Hyeon-Cheol
    • 한국항공운항학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.302-307
    • /
    • 2004
  • 무인 항공기는 지상 조종 또는 자동 비행으로 원격제어, 각종 정찰, 수송, 및 공격 등의 다양한 임무를 수행할 수 있는 비행체 및 이를 포함한 시스템을 의미한다. 무인기의 자율 운항을 위해서는 위치, 속도 및 자세 등의 항법 정보를 제공하는 항법 시스템이 반드시 필요하며 크기가 작은 무인기를 위해서는 탑재체의 중량이 적은 항법 시스템이 반드시 필요하다. 최근에는 반도체 MEMS 기술을 이용한 저가형 관성 센서들이 많이 개발 되고 있으며 이를 이용한 소형, 저전력, 고정밀 항법 시스템들이 많이 연구 개발되고 있다. GPS/AHRS 결합 시스템은 자세각, 각속도, 가속도 정보 및 GPS를 이용한 위치, 슥도 정보 제공이 가능한 시스템으로 비행체의 자율비행을 위한 정보 제공이 가능한 시스템이다. 본 논문에서는 MEMS 센서를 기반으로한 GPS/AHRS 결합 항법 시스템 설계하고 차량을 이용하여 성능을 평가한 결과를 보여준다.

  • PDF

A Study on Trend of Technology Development for Unmanned Combat Ground Vehicle (무인전투차량 기술개발 동향조사 및 분석)

  • Park, Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1735-1739
    • /
    • 2009
  • The keen global competition is expected among foreign advanced nations for source, key technologies required by unmanned combat ground vehicle. Therefore, the trend of technologies for unmanned ground combat vehicle was analyzed in this research. It was based on the submitted patents from 1988 to 2008 in Korea, U.S.A, Japan, Europe, Canada and Israel. This analysis was focused on finding the technical level, the challenge area and breakthrough technologies and the growth of technologies of each nations considering opinions of experts. This report suggested the field of key technology development

Synchronized Transmission for Real-Time Remote Control in the Wireless Network (무선 네트워크에서 실시간 원격제어를 위한 동기화 전송)

  • Kang, Hongku;Kim, Namgon;Kim, Jong-Won
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.2
    • /
    • pp.64-70
    • /
    • 2021
  • Nowadays, there are significant interests in real-time remote control using wireless networks. In implementing real-time remote control, one important factor is delay performance of real-time control message. Especially, the technique to reduce jitter of delay is necessary in transmitting periodically real-time control message. In this paper, we proposed synchronized transmission to reduce jitter of delay, when real-time control message was transmitted through wireless networks. The proposed transmission kept synchronization between source node and wireless transmitter and controlled transmission instance to transmit real-tie control message with fixed delay in wireless networks. According to results of experiment in military unmanned vehicle system, the proposed transmission reduced jitter of delay as 32% as that of a non-employing case.

Development of Car Type Classification Algorithm on the UAV platform using NCC (NCC기법을 이용한 무인항공기용 차종 식별 알고리즘 개발)

  • Jeong, Jae-Won;Kim, Jeong-Ho;Heo, Jin-Woo;Han, Dong-In;Lee, Dae-Woo;Seong, Kie-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.582-589
    • /
    • 2012
  • This paper describes the algorithm recognizing car type from the image received from UAV and the recognition results between three types of car images. Using the NCC(Normalized Cross-Correlation) algorithm, geometric information is matched from template images. Template images are obtained from UAV and satellite map and indoor experiment is performed using satellite map. After verification of the possibility, experiment for verification of same car type recognition is performed using small UAV. In the experiment, same type cars are matched with 0.6 point similarity and truck with similar color distribution is not matched with template image of a sedan.

저고도 대공방어 무기체계-균형유지의 필요성을 중심으로

  • Son, Seong-Yun
    • Defense and Technology
    • /
    • no.3 s.229
    • /
    • pp.80-91
    • /
    • 1998
  • 오늘날 기동하는 장갑부대 및 기계화부대등 고가의 군사자산 보호는 제5의 위협으로 상정한바 있는 지상공격기(항공기, 유도미사일, 무인항공기 등)의 다양한 공격위협과 교전할 수 있는 전천후 방공능력이 절실히 요구되고 있기 때문에 서방 선진국은 저고도용 지대공 미사일(스팅어, 스타버스트, 미스트랄, RBS-70, 이글라 등)개발과 단일 장갑 차량에 "복합 방공무기체계"를 경쟁적으로 개발 및 운용하고, 중단거리 기동 방공체계를 연구 개발중이다. 특히 고도로 유동적인 장차전의 전장환경에서 적은 최신 무기로 공중침투 공격을 감행할 것으로 예상된다. 따라서 이 글에서는 선진국의 "저고도 대공방어 무기체계"를 고찰하고자 한다.

  • PDF

Study on Vehicle Motion Analysis and Control for Skid Steering UGVs with Articulating Arms ($6{\times}6$ 가변 현수형 무인차량의 주행 분석 및 제어에 관한 연구)

  • Kang, Sin-Cheon;Huh, Jin-Wook;Lee, Sang-Hoon;Jee, Tae-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.747-752
    • /
    • 2011
  • Recently, skid steering methods have been increasingly applied to unmanned ground vehicles since they can provide a narrow turn that general steering methods like ackerman steering may not provide. However, dynamic behaviors of the skid steering vehicles with articulating arms which occur during a steering are very complicated and coupled. This makes it difficult to control vehicles and in severe case vehicles may loose stability. There are two methods to control unmanned ground vehicles. The first one is speed control method generally used with easiness and robustness in remote vehicle control. The next one is torque control allowing the vehicles to get better performance in several cases provided careful application is achieved. This paper addresses dynamic phenomena of skid steering vehicles during steering and compares with vehicle driving control methods between torque(traction force) control and speed control.

Localization with Two Optical Flow Sensors for Small Unmanned Ground Vehicles (두 개의 광류센서를 이용한 소형무인로봇의 위치 추정 기술)

  • Huh, Jinwook;Kang, Sincheon;Hyun, Dongjun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.95-100
    • /
    • 2013
  • Localization is very important for the autonomous navigation of Unmanned Ground Vehicles; however, it is difficult that they have a precise Inertial Navigation System(INS) sensor, especially Small Unmanned Ground Vehicle(SUGV). Moreover, there are some condition such as denial of global position system(GPS), GPS/INS integrated system is not robust. This paper proposes the estimation algorithm with optical flow sensor and INS. Being compared with previous researches, the proposed algorithm is suitable for skid steering vehicles. We revised the measurement model of previous research for the accuracy of side direction position. Experimental results were performed to verify the algorithm, and the result showed an excellent performance.