• Title/Summary/Keyword: 지상궤적반복 위성군

Search Result 3, Processing Time 0.025 seconds

Analysis of Satellite Orbit Elements and Study of Constellation Methods for Micro-satellite System Operation (초소형위성체계 운용을 위한 위성궤도요소 분석 및 위성군 배치기법에 대한 고찰)

  • Soung Sub Lee;Jihae Son;Youngbum Song
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.337-345
    • /
    • 2023
  • This study analyzes considerations for satellite orbit elements for the national micro-satellite system to effectively perform its mission in accordance with the operational concept, and compares the conventionally used Walker method to improve the performance of the satellite constellation method of the repeating ground track orbit. In satellite orbit element analysis, altitude candidate values of micro-satellite system, use of eccentricity and argument of perigee through frozen orbit, necessity of selection of appropriate orbit inclination, and satellite phasing rules for flying the same repeating ground track orbit are proposed. Based on these analysis results, the superiority of the constellation method of the repeating ground track orbit compared to the Walker method is verified in terms of revisit performance analysis, global coverage characteristics, and orbit consistency.

Design of Micro-Satellite Constellation for Reconnaissance of Korean Peninsula (한반도 감시·정찰을 위한 초소형 위성군 설계)

  • Shin, Jinyoung;Hwang, Youngmin;Park, Sang-Young;Jeon, Soobin;Lee, Eunji;Song, Sung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.401-412
    • /
    • 2022
  • In this study, we investigated the design methods of satellite constellations to conduct near-real-time surveillance reconnaissance of the Korean Peninsula. Also, we designed satellite constellations utilizing the Walker-Delta method and repeat-ground-track method, and taking into account the target area and the feasible number of satellites. The constrains of the Electro-Optical and Synthetic Aperture Radar equipment were also considered in performance analysis. As a result, the designed constellation has mean revisit time of less than 30 min which enables near-real-time surveillance reconnaissance of the Korean Peninsula. This research provides the strategy to design the satellite constellation for reconnaissance. Furthermore, it contributes to suggesting an operating strategy for micro-satellites constellation and guidelines for establishing space force.

Orbit Design to Optimize Revisit Performance of Low Earth Orbit Satellite Constellation (저궤도 군집위성의 재방문 성능 최적화를 위한 위성궤도 설계)

  • Soung-Sub Lee;Jong-Pil Kim;Eung-Noh You;Jae-Hyuk Youn;Ho-Hyun Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.502-509
    • /
    • 2023
  • This study presents a satellite constellation method that achieves optimal revisit performance by utilizing genetic algorithm techniques. The Walker method is a global coverage concept, and there are limitations to target-centered constellation considering the strategic environment of the Korean Peninsula. To overcome these limitations, targets are set in major areas of interest in North Korea, orbit elements with optimal revisit performance for each target are searched, and based on this, the number of satellites optimized for each target is derived using a genetic algorithm. The results of this study demonstrate the performance of the optimized constellation by applying phasing rules to achieve the desired revisit performance.