• Title/Summary/Keyword: 지반-말뚝 상호작용

Search Result 129, Processing Time 0.028 seconds

Study on the Dynamic Characteristics of Foundation-Soil System for the Seismic Analysis of Structures (구조물 내진설계를 위한 기초지반체계 동특성에 관한 연구)

  • 김용석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.3
    • /
    • pp.1-10
    • /
    • 1997
  • It is recognized that the dynamic of a structure is affected by the characteristics of the soil layer and foundation. However the design codes for the seismic design of structures are partially reflecting the caharcteristics of the soil layers due to the inherent complexity of them and the lack of systematic study results for the foundation-soil system, and leading to unconservative or too conservative results. In this study, the kinematic interaction effects of foundation-soil system was investigated for the seismic analyses of structures estimating the effects of the shear wave velocity, the depth of the soil layer, the embedment of a foundation and pile foundation, and the modified classification criteria of soil layers are proposed for the reasonable seismic analyses of structures considering the characteristics of soil layers and foundations. For the embedded medium or large foundations (including pile foundations), at least 60m soil layer below the foundation should be considered for the seismic analyses of structures to tate into account the kinematic interaction effects of the foundation-soil system, and also the rocking motion of foundation-soil system with or without piles should be included in the seismic analyses of structures.

  • PDF

Behavior of Pile Groups in Granite Soil Under Lateral Loading (화강풍화토에서 수평력을 받는 무리말뚝의 거동)

  • Ahn, Kwangkuk;Ko, Pilhwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.69-73
    • /
    • 2009
  • In this study, three dimensional numerical analyses were performed with variation of pile spacing (S=3D, 4D, 5D) to compare the behaviour of single pile and pile group with cap in granite soil. In order to compare and analyze the lateral resistance of single pile and pile group by changing pile spacing, the pile group with array of $1{\times}3$ was employed. To reduce the computation time the symmetric boundary condition was used. And Druker-Prager model and elasticity model were used for granite soil and for concrete pile and cap, respectively. Using the analyses results of pile group in granite soil under lateral loading, p-y curve for pile group and single pile with changing pile spacing was drawn. With p-y curve p-multiplier was evaluated. As a result of analysis, the value of p-multiplier was increased with increasing pile spacing under 1.0 due to pile shadow effects.

  • PDF

Parametric Study of Dynamic Soil-pile-structure Interaction in Dry Sand by 3D Numerical Model (3차원 수치 모델을 이용한 건조사질토 지반-말뚝-구조물 동적 상호작용의 매개변수 연구)

  • Kwon, Sun-Yong;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.51-62
    • /
    • 2016
  • Parametric studies for various site conditions by using 3d numerical model were carried out in order to estimate dynamic behavior of soil-pile-structure system in dry soil deposits. Proposed model was analyzed in time domain using FLAC3D which is commercial finite difference code to properly simulate nonlinear response of soil under strong earthquake. Mohr-Coulomb criterion was adopted as soil constitutive model. Soil nonlinearity was considered by adopting the hysteretic damping model, and an interface model which can simulate separation and slip between soil and pile was adopted. Simplified continuum modeling was used as boundary condition to reduce analysis time. Also, initial shear modulus and yield depth were appropriately determined for accurate simulation of system's nonlinear behavior. Parametric study was performed by varying weight of superstructure, pile length, pile head fixity, soil relative density with proposed numerical model. From the results of parametric study, it is identified that inertial force induced by superstructure is dominant on dynamic behavior of soil-pile-structure system and effect of kinematic force induced by soil movement was relatively small. Difference in dynamic behavior according to the pile length and pile head fixity was also numerically investigated.

A Practical Analysis Method for the Design of Piled Raft Foundations (말뚝지지 전면기초의 설계를 위한 실용적 해석방법에 관한 연구)

  • Lee, Seung-Hoon;Park, Young-Ho;Song, Myung-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.83-94
    • /
    • 2007
  • Piled raft foundations have been highlighted as an economical design concept of pile foundations in recent years. However, piled raft foundations have not been widely used in Korea due to the difficulty in estimating the complex interaction effects among rafts, piles and soils. The authors developed an effective numerical program to analyze the behavior of piled raft foundations for practical design purposes and presented it briefly in this paper. The developed numerical program simulates the raft as a flexible plate consisting of finite elements with eight nodes and the raft is supported by a series of elastic springs representing subsoils and piles. This study imported another model to simulate pile groups considering non-linear behavior and interaction effects. The apparent stiffnesses of the soils and piles were estimated by iterative calculations to satisfy the compatibility between those two components and the behavior of piled raft foundations can be predicted using these stiffnesses. For the verification of the program, the analysis results about some example problems were compared with those of rigorous three dimensional finite element analysis and other approximate analysis methods. It was found that the program can analyze non-linear behaviors and interaction effects efficiently in multi-layered soils and has sufficient capabilities for application to practical analysis and design of piled raft foundations.

Development of 3D Dynamic Numerical Simulation Method on a Soil-Pile System (지반-말뚝 시스템에 대한 3차원 동적 수치 모델링 기법 개발)

  • Kim, Seong-Hwan;Na, Seon-Hong;Han, Jin-Tae;Kim, Sung-Ryul;Sun, Chang-Guk;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.85-92
    • /
    • 2011
  • The dynamic behavior of piles becomes very complex due to soil-pile dynamic interaction, soil non-linearity, resonance phenomena of soil-pile system and so on. Therefore, the proper numerical simulation of the pile behavior needs much effort and calculation time. In this research, a new modeling method, which can be applied to the conventional finite difference analysis program FLAC 3D, was developed to reduce the calculation time. The soil domain in this method is divided into a near-field region and a far-field region, which is not influenced by the soil-pile dynamic interaction. Then, the ground motion of the far-field is applied to the boundaries of the near-field instead of modeling the far-field region as finite meshes. In addition, the soil non-linearity behavior is modeled by using the hysteretic damping model, which determines the soil tangent modulus as a function of shear strain and the interface element was applied to simulate the separation and slip between the soil and pile. The proposed method reduced the calculation time by as much as one third compared with a usual modeling method and maintained the accuracy of the calculated results. The calculated results by the proposed method showed a good agreement with the prototype pile behavior, which was obtained by applying a similitude law to the 1-g shaking table test results.

Evaluation of Soil-Structure Interaction Responses of LNG Storage Tank Subjected to Vertical Seismic Excitation Depending on Foundation Type (기초형식에 따른 LNG 저장탱크의 지반-구조물 상호작용을 고려한 수직방향 지진응답 분석)

  • Son, Il-Min;Kim, Jae-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.367-374
    • /
    • 2019
  • We investigate the effect of soil-structure interaction (SSI) on the response of LNG storage tanks to vertical seismic excitation depending on the type of foundation. An LNG storage tank with a diameter of 71 m on a clay layer with a thickness of 30 m upon bedrock, was selected as an example. The nonlinear behavior of the soil was considered in an equivalent linear method. Four types of foundation were considered, including shallow, piled raft, and pile foundations (surface and floating types). In addition, the effect of soil compaction within the group pile on the seismic response of the tank was investigated. KIESSI-3D, an analysis package in the frequency domain, was used to study the SSI and the stress in the outer tank was calculated. Based on an analysis of the numerical results, we arrived at three main conclusions: (1) for a shallow foundation, the vertical stress in the outer tank is less than the fixed base response due to the SSI effect; (2) for foundations supported by piles, the vertical stress can be greater than the fixed base stress due to the increase in the vertical impedance due to the piles and the decrease in radiation damping; and (3) soil compaction had a miniscule impact on the seismic response of the outer tank.

Behaviour of a Single Pile in Heaving Ground Due to Ground Excavation (지하터파기로 인해 융기(Heaving)가 발생한 지반에 근입된 단독말뚝의 거동)

  • Lee, Cheolju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • A finite element analysis has been conducted to clarify the behaviour of a single pile in heaving ground related to ground excavation. The numerical analysis has included soil slip at the pile-soil interface, analysing the interaction between the pile and the clay has been studied. The study includes the upward movement of the pile, the relative shear displacement between the pile and the soil and the shear stresses at the interface and the axial force on the pile. In particular, the shear stress transfer mechanism at the pile-soil interface related to a decrease in the vertical soil stress has been rigorously analysed. Due to the reductions in the vertical soil stress after excavation, the relative shear displacement and the shear stress along the pile have been changed. Upward shear stress developed at most part of the pile (Z/L=0.0-0.8), while downward shear stress is mobilized near the pile tip (Z/L=0.8-1.0) resulting in tensile force on the pile, where Z is the pile location and L is the pile length. Some insights into the pile behaviour in heaving ground analysed from the numerical analyses has been reported.

Three-Dimensional Analysis of the Laterally Loaded Pile in Elasto-Plastic Soil by Finite Element Method (탄소성 지반중의 횡각을 받는 말뚝의 유한요소법에 의한 삼차원 해석에 관한 연구)

  • 박성재;배종순
    • Geotechnical Engineering
    • /
    • v.2 no.2
    • /
    • pp.5-16
    • /
    • 1986
  • Reasonable solutions are needed when the lateral load acting on the head of a pile can not be ignored. There are many difficulties in analyzing the displacement of a laterally loaded Pile because of the complex interaction between the pile and the surrounding soil. In this paper, assuming that a pile and surrounding soil are elasto-plastic mass, and discontinuity between the two is connected with interface elements, writers have tried to solve the problem by using three-dimensional finite element method. Furthermore, the results of numerical analysis obtained by the developed program in this study have been compared with measured field values. The conclusions of this study are as follows; 1. Assuming that the soil behaves as an elasto-plastic mass, there has been a good agreement with measured field displacements. 2. It has been confirmed that interface elements overcome discontinuity between a pile and surrounding soil. 3. As the thickness of interface elements Increases, the stress and the displacement decrease. Al- though the difference is not significant, good results can be expected when it is as thin as possible.

  • PDF

Failure Characteristics of Foundation System Reinforced with Stone Columns (쇄석말뚝으로 보강된 기초시스템의 파괴 거동)

  • Shin, Bang Woong;Bae, Woo Seok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.71-80
    • /
    • 2001
  • The quantitative analysis of bearing capacity with stone column-mat is not ease because the bearing capacity of stone column is affected by so many parameters. The bearing capacity of stone column is mainly governed by horizontal resistance along the interface with soil. Also, this foundation system is affected by geometric factors such as column spacing, embedment ratio and failure surface inclination. Therefore, in this study, critical length and the effect of failure surface inclination was studied with single and group end bearing stone columns by loading tests. Results of model tests are compared to the present theoretical methods and are examined with FEM analysis.

  • PDF

A Study on the Behaviour of a Single Pile to Tunnelling Including Soil Slip (Soil slip을 고려한 터널굴착에 의한 단독말뚝의 거동연구)

  • Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.59-67
    • /
    • 2009
  • Three-dimensional (3D) numerical analyses have been conducted to study the behaviour of a single pile to tunnelling. The numerical analysis has included soil slip at the pile-soil interface. In the numerical analyses the interaction between the tunnel and the pile constructed in weathered soil and rock has been analysed. The study includes the pile settlement, the relative shear displacement between the pile and the soil and the shear stresses at the interface and the axial force on the pile. In particular, the shear stress transfer mechanism at the pile-soil interface related to the tunnel advancement has been rigorously analysed. Due to changes in the relative shear displacement at the pile-soil interface during the tunnel advancement, the shear stress and the axial force distributions along the pile have been changed. Upward shear stress developed at most part of the pile (Z/L=0.0-0.8), while downward shear stress is mobilised near the pile tip (Z/L=0.8-1.0) resulting in tensile force on the pile, where Z is the pile location and L is the pile length. Some insights into the pile behaviour to tunnelling obtained from the numerical analyses will be reported and discussed.

  • PDF