• 제목/요약/키워드: 지반 보강

검색결과 1,423건 처리시간 0.029초

Compression Behavior of Manufacturability Enhanced FRP-Concrete Hybrid Composite Pile (제작성을 개선한 하이브리드 FRP-콘크리트 합성말뚝의 압축거동)

  • Lee, Young-Geun;Park, Joon-Seok;Kim, Sun-Hee;Kim, Hong-Lak;Yoon, Soon-Jong
    • Composites Research
    • /
    • 제26권1호
    • /
    • pp.66-71
    • /
    • 2013
  • As a fundamental structural element of construction, a pile is constructed to transfer loads from superstructure to foundation. In general, since the pile foundation is constructed in the ground or ground under water, it is difficult to protect from the damages due to moisture and/or salt which create corrosive environment and it is even more difficult to estimate its durability. In this study, in order to enhance the durability and constructibility of the pile foundation, FRP-concrete hybrid composite pile (HCFFT) is suggested. Moreover, equation for the prediction of load carrying capacity of HCFFT circular members under compression is suggested and discussed based on the results of analytical and experimental investigations. In addition, we also conducted the finite element simulation for the structural behavior of new HCFFT composite pile and the result is compared with those of experimental and analytical studies. In addition, the axial loading capacity of new HCFFT composite pile is compared with those of existing PHC pile and hollow circular steel pipe pile, and it was found that the new HCFFT composite pile has advantages over conventional PHC and steel pipe piles.

Evaluation of tunnel face stability based on upper bound theorem (상한치 이론에 근거한 터널 막장의 안정성 연구)

  • Lee, In-Mo;Lee, Jae-Sung;Nam, Seok-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제5권1호
    • /
    • pp.3-11
    • /
    • 2003
  • Face stability of a tunnel is a main concern during tunnel excavation. However, there has been only a few studies on this problem while a lot of researches on the support systems have been carried out. In addition, when tunneling is performed below the groundwater level, the groundwater flows into the tunnel so that the seepage forces generated on the tunnel face might give rise to a serious potential for the face instability. In this study, the face stability was evaluated by simultaneously considering two factors: one is the effective stress calculated by upper bound theorem; the other is the seepage forces acting on the tunnel face obtained by numerical analysis under the condition of steady-state groundwater flow. Tunneling in difficult geological conditions often requires auxiliary techniques to guarantee safe tunnel excavations and/or to prevent damage to structures and services around the tunnel. The steel pipe-reinforced multistep grouting has been recently applied to tunnel sites in Korea. Face stability of a tunnel with the steel pipe-reinforced multistep grouting was also analyzed in this study.

  • PDF

A Case Study on the Application of Safely Analysis for the Tunnel Adjacent to the Pier (교각에 근접한 터널의 안정성 평가에 대한 사례 연구)

  • 이선복;윤지선
    • Tunnel and Underground Space
    • /
    • 제13권2호
    • /
    • pp.77-86
    • /
    • 2003
  • The finite element method and statistics of the convergence measurement are useful method of the stability analysis of the tunnel adjacent to the pier. It is the purpose of the this case study to certificate of validity of the application of those methods. The safety of the pilot tunnel method and LW pre-grouting has been evaluated from the FEM analysis. The three-dimensional finite element method is carried out for the decision of the level of stress redistribution at the two-dimensional numerical analysis. An analysis of the convergence is carried out by the estimation of preceding convergence at tunnel excavation. F-examination is applied for this estimation. As results of that analysis, The F-value is from 10.81 to 158.74 and the coefficient of determination is from 0.82 to 0.99. An analysis of convergence is carried out by using regression analysis. Consequently, it is shown that the convergence can be modeled as following function C(t)=a[1-exp(-bt)].

Studies on the Development of Bearing Capacity Reinforcement for the Foundation of Soil (기초지반의 지지력보강공법에 관한 연구)

  • 유동환;최예환;유연택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제30권1호
    • /
    • pp.38-49
    • /
    • 1988
  • This paper presented as follows results of laboratory model tests with various shaped footings on soil bed reinforced with the strips on the base of behaviour of soil structure according to the loads and triaxial test results reinforced with geotextiles. Their parameters studied were the effects on the bearing capacity of a footing of the first layer of reinforcement, horizontal and vertical spacing of layers, number of layers, tensile strength of reinforcement and iclination load to the vertical 1.Depending on the strip arrangement, ultimate bearing capacity values could be more improved than urreinforced soil and the failure of soil was that the soil structure was transfered from the macrospace to microspase and its arrangement, from edge to edge to face to face. 2.The reinforcement was produced the reinforcing effects due to controlling the value of factor of one and permeable reinforcement was never a barrier of drainage condition. 3.Strength ratio was decreased as a linear shape according to increment of saturation degree of soil used even though at the lower strength ratio, the value of M-factor was rot influenced on the strength ratio but impermeable reinforcement decreased the strength of bearing capacity. 4.Ultimate bearing capacity under the plane-strain condition was appeared a little larger than triaxial or the other theoretical formulars and the circular footing more effective. 5.The maximum reinforcing effects were obtained at U I B=o.5, B / B=3 and N=3, when over that limit only acting as a anchor, and same strength of fabric appeared larger reinforcing effects compared to the thinner one. 6.As the LDR increased, more and more BCR occurred and there was appeared a block action below Z / B=O.5, but over the value, decrement of BCR was shown linear relation, and no effects above one. 7.The coefficient of the inclination was shown of minimum at the three layers of fabrics, but the value of H / B related to the ultimate load was decreased as increment of inclination degree, even though over the value of 4.5 there wasn't expected to the reinforcing effects As a consequence of the effects on load inclination, the degree of inclination of 15 per cent was decreased the bearing capacity of 70 per cent but irnproved the effects of 45 per cent through the insertion of geotextile.

  • PDF

Safety Assessment of Embankment by Analysis of Electrical Properties (전기비저항 물성 분석을 통한 제체의 안정성 검토)

  • Oh, Seok-Hoon;Suh, Baik-Soo
    • The Journal of Engineering Geology
    • /
    • 제18권3호
    • /
    • pp.245-255
    • /
    • 2008
  • The variation of the electrical property of embankment material was analyzed from laboratory experiments and the result of field survey, in order to enhance the interpretation of electrical resistivity survey frequently used for safety assessment of embankment. At first, the kaolinite, showing similar physical property with core material of embankment, was used to examine the variation of the resistivity value according to degree of consolidation. The test showed that a drop of shear strength induces increase of resistivity value regardless of degree of water content. This result means that porous zones of weak core material in embankment may be appeared as highly resistive part in the electrical resistivity survey. This observation implies that it may fail to detect weak core material by electrical method, if we only try to and zones showing low resistivity value. And, we performed Standard Penetration Test (SPT) to analyze the correlation between electrical property and ground stiffness. Finally, a mechanism to describe the variation of electrical resistivity due to grouting effect was proposed and real field data were analyzed.

Disassembly and Reconstruction of Stone Pagoda Using 3-Dimensional Image Analysis : Case Study in Simgoksa Seven-storied Stone Pagoda (3차원 영상분석을 활용한 석탑의 해체와 재조립 : 심곡사칠층석탑 사례 연구)

  • Choi, Hee Soo;Lee, Chan Hee;Han, Seong Hee;Lee, Seong Min
    • Journal of Conservation Science
    • /
    • 제32권4호
    • /
    • pp.561-570
    • /
    • 2016
  • This research was a technical case study for the authentic restoration of the seven-storied Simgoksa stone pagoda after disassembly and reconstruction using three-dimensional image analysis. During disassembly and reconstruction, the pagoda's properties were analyzed in terms of the overall modification and displacement of the pagoda. Distortion was minimized by ensuring structural stability during the reconstruction process. Also, the original site of the pagoda was examined in order to utilize it fully during rebuilding. Before reconstruction of the pagoda, moss and lichen on the stone surfaces were removed by scientific surface cleaning. The foundation of the pagoda was reinforced with rammed earth than was similar to the original foundation using a mixture of soil and quicklime. The results are expected to provide valuable data for the reconstruction of other stone pagodas.

Strength Characteristics of the Vertical and Inclined Concrete Pole (수직 및 경사 건주된 콘크리트 전주의 강도특성)

  • Wang, Yun-Chan;Kim, Dae-Hak;Park, Joong-Sin;Yi, Dong-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • 제23권6호
    • /
    • pp.118-124
    • /
    • 2009
  • In order to know the range of install possibles of the horizontal stay without general stay, strength characteristic tests were performed for the Vertical and 80[$^{\circ}$] inclined concrete poles. From the results of one cycle strength tests, the safety factors were 2.8, 2.5 and 2.1 for the poles of general load, heavy load and high strength load, respectively. However, the crack was occurred when the bending bounds of upper part of pole was above 2[$^{\circ}$], and working load was similar to the rated load of pole at this time. Therefore, it could be concluded that the reinforcement by the installation of the stay and the support was necessary certainly, if the bending bounds of pole, which was installed on a solid foundation, are above 2[$^{\circ}$].

A study on the Rock-support response behavior in tunnelling (터널링에 의한 암반-지보 반응거동에 관한 연구)

  • 백승한;문현구
    • Tunnel and Underground Space
    • /
    • 제8권4호
    • /
    • pp.321-331
    • /
    • 1998
  • A reliable analysis of tunnelling is needed to accomplish technically sound design and safe and economical construction. For the reliable analysis, a series of procedures of construction which include excavation and support stages must be considered. In this study, rock-support response behavior is studied and simulated in 2-D and 3-D finite element methods. Through the analysis of rock-support response behavior, the effects of the properties of shotcrete on the load distribution ratio can be quantified. The load distribution ratios for different rock types, different unsupported spans and various lateral earth pressure coefficients can be determined from the results of the 3-D finite element analysis. This load distribution ratios can be applied to a practical tunnel design through understanding of the trend of those various factors affecting the rock-support interaction.

  • PDF

Stability Analysis of Levee for Watershed according to Water Level Change (수위변화에 따른 하천 유역 제방의 안정성 평가)

  • Lee, Hoo Sang;Lee, Jea Joon;Heo, Jun Heang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.242-242
    • /
    • 2017
  • 산업혁명 이후 인간사회의 산업화 및 도시화의 가속으로 지구온난화는 기후변화를 야기해 왔으며, 이로 인한 각종 부정적인 영향과 심각성은 날로 커져가고 있는 현실이다. IPCC(Intergoverment Panel on Climate Change)는 기후변화의 주범인 온실가스를 감축할 지라도 기후의 탄성 때문에 앞으로 수세기 이상 계속 진행될 것으로 전망하였으며, 기후변화 영향의 근원적 방지는 불가능하기 때문에 결국 수자원 관리 측면에서도 기후변화에 적응하기 위한 각종 적응전략 개발의 필요성을 강조하였다(IPCC, 2007). 최근 제방의 안정성에 대한 문제로 기후변화에 따른 홍수위 또는 담수 등의 조건으로 제외지의 고수위를 유지하게 되어 제체 내 침투가 일어날 수 있고, 수위급강하로 제방사면의 활동등이 일어날 수도 있으며 기초지반의 지지력이 부족하여 침하가 과다하게 발생하므로 제방의 소요높이를 유지할 수 없게 되어 월류로 인한 피해가 발생할 수 있다. 본 연구는 제방의 간극수압자료와 2차원 지하수침투 모형인 SEEP/W를 이용하여 안양천과 오산천의 침투거동을 분석하여 침투안정성을 평가하고자 하였다. 또한, 4대강 살리기 마스터 플랜(국토해양부, 2009)에 수록된 제방보강의 방법 중 누수에 대하여 제방고, 제방폭 및 제내지반고의 변화를 통한 지하수 침투거동을 모의, 분석하여 침투안정성을 평가하였다. 또한 기후변화에 따른 도시하천의 수문특성 변화분석 결과를 바탕으로 향후 발생할 수 있는 극치 수문사상의 값을 반영한 설계기준 강화 수방시설 계획 등의 연구에 활용하며, 여러 가지 수문학적 불확실성에 의하여 가변 가능한 도시하천 유역의 취약성 평가 및 위험도 분석을 통한 기후변화 대응과 수공구조물 설계 및 수방전략 수립에 활용하고자 한다.

  • PDF

Geophysical Explorations for Safety Analysis of Bangeosan-Maaebul(Stone Relief Bhaisajyaguru triad at Mt. Bangeosan) (방어산 마애여래입상의 안전진단을 위한 지구물리탐사)

  • O, Seon-Hwan;Seo, Man-Cheol
    • Journal of the Korean Geophysical Society
    • /
    • 제4권1호
    • /
    • pp.11-20
    • /
    • 2001
  • Seismic refraction and electrical resistivity surveys were conducted in Bangeosan Maaebul site located in Haman, Kyungnam, in order to present geophysical safety analysis method for masonry cultural properties. Seismic refraction exploration revealed that the ground was composed of three layers in term of seismic wave velocity; the upper, medium, and lower layers. The low velocity ranging from 308 to 366 m/sec in upper layer suggests weathered soil, the intermediate velocity from 1906 to 2090 m/sec in the medium layer indicates weathered rocks, and the high velocity from 5061 to 5650 m/sec in the lower layer implies extremely hard rocks. Our seismic result suggests that the upper and medium layer around the Maaebul should be reinforced to support the construct. The result of electric resistivity survey shows that there exists a low resistivity zone, ranging from 131 to 226 Ohm-m, at the right side of the Maaebul with the direction of NE-NNE. This area is the weakness zone as it plays role of the underground water passage in rainy season.

  • PDF