• Title/Summary/Keyword: 지반증폭계수

Search Result 51, Processing Time 0.026 seconds

Seismic Response Analyses of the Structure-Soil System for the Evaluation of the Limits of the Site Coefficients (지반계수의 한계값 평가를 위한 구조물-지반체계에 대한 지진응답해석)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.67-77
    • /
    • 2007
  • Site coefficients in IBC and KBC codes have some limits to predict the rational seismic responses of a structure, because they take into account only the effect of the soil amplification without the effects of the structure-soil interaction. In this study, upper and lower limits of the site coefficients are estimated through the pseudo 3-D elastic seismic response analyses of structures built on the linear or nonlinear soil layers taking Into account the effects of the structure-soil interaction. Soil characteristics of site classes of A, B and C were assumed to be linear, and those of site classes of D and E were done to be nonlinear and the Ramberg-Osgood model was used to evaluate shear modulus and damping ratio of a soil layer depending on the shear wave velocity of the soil layer, Seismic analyses were performed with 12 weak or moderate earthquake records scaled the peak acceleration to 0.1g or 0.2g and deconvoluted as earthquake records at the bedrock located at 30m deep under the outcrop. With the study results of the elastic seismic response analyses of structures, new standard response spectrum and upper and lower limits of the site coefficients of $F_{a}\;and\;F_{v}$ at the short period range and the period of 1 second are suggested including the effects of the structure-soil interaction, and new site coefficients for the KBC code are also suggested.

Application of Soil Factor on the Aseismic Design (내진 설계시 지반계수의 합리적 적용에 대한 연구)

  • 이인모;임종석
    • Geotechnical Engineering
    • /
    • v.9 no.1
    • /
    • pp.7-20
    • /
    • 1993
  • The first Korean earthquake resistant design code was enacted in 1988. In the code, the soil factor which takes into account both the soil amplification factor and the soil -structare interaction effect is divided into three groups : soil factor, 5 : 1.0, 1.2 and 1.5. In order to assist in choosing the soil factors appropriately in the earthquake resistant design, the local site effects on the based shear force induced by earthquakes are considered in depth for typical soil conditions in Korea. The depth of the alluvial and/or weathered zone is usually not deep and the fresh rock is found at depth shallower than 20 meters, and even at about 10 meters around Seoul. One dimensional wave propagation theory and the elastic half space method are used to obtain the soil -structure interaction effect as well as the soil amplification effect. The kinematic interaction effect due to scattering of waves by pile foundation is also considered. Finally, the soil factor is recommended for each soil condition from loose state to dense, and also from shallow soil depth to deep, so that the designer can choose the factor with-out difficulty.

  • PDF

Evaluation of the Site Specific Ground Response in Korean Urban Site (국내 도시지역의 지반응답특성 거동 평가)

  • Shin, Dea-Sub;Kim, Hu-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.250-255
    • /
    • 2017
  • When an earthquake occurs, it is necessary to evaluate the site-specific ground response while considering ground characteristics in seismic design. The design seismic force of Korean seismic design criteria is borrowed from the Uniform Building Code(UBC-1997). However, the criteria are based on the ground characteristics of the United States, which are different from the ground characteristics in Korea, and using them could cause over-or under-designing. Therefore, it is important to develop a proper design response spectrum for Korean ground characteristics. In this study, 158 ground sites in Korean urban areas were selected and compared to those in the western part of the United States, and their site-specific ground responses were analyzed. The classification standard in the seismic design criteria classifies the 158 sites into 37 sites, 107 sites, and 14 sites. Using 7 earthquake inputs, the criteria were compared for each group.The Korean design response spectrum underestimates the amplification of the short-period range and overestimates the amplification in the long-period range. There were large differences in the results of the and sites,which account for 77 percent of the 158 sites. Therefore, there is a need to modify the amplification factor in the Korean seismic criteria to properly reflect Korean ground characteristics.

Suggestion of Additional Criteria for Site Categorization in Korea by Quantifying Regional Specific Characteristics on Seismic Response (지역고유 지진응답 특성 정량화를 통한 국내 부지 분류 기준의 추가 반영 제안)

  • Sun, Chang-Guk
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.203-218
    • /
    • 2010
  • The site categorization and corresponding site amplification factors in the current Korean seismic design guideline are based on provisions for the western United States (US), although the site effects resulting in the amplification of earthquake ground motions are directly dependent on the regional and local site characteristic conditions. In these seismic codes, two amplification factors called site coefficients, $F_a$ and $F_v$, for the short-period band and midperiod band, respectively, are listed according to a criterion, mean shear wave velocity ($V_S$) to a depth of 30 m, into five classes composed of A to E. To suggest a site classification system reflecting Korean site conditions, in this study, systematic site characterization was carried out at four regional areas, Gyeongju, Hongsung, Haemi and Sacheon, to obtain the $V_S$ profiles from surface to bedrock in field and the non-linear soil properties in laboratory. The soil deposits in Korea, which were shallower and stiffer than those in the western US, were examined, and thus the site period in Korea was distributed in the low and narrow band comparing with those in western US. Based on the geotechnical characteristic properties obtained in the field and laboratory, various site-specific seismic response analyses were conducted for total 75 sites by adopting both equivalent-linear and non-linear methods. The analysis results showed that the site coefficients specified in the current Korean provision underestimate the ground motion in the short-period range and overestimate in the mid-period range. These differences can be explained by the differences in the local site characteristics including the depth to bedrock between Korea and western US. Based on the analysis results in this study and the prior research results for the Korean peninsula, new site classification system was developed by introducing the site period as representative criterion and the mean $V_S$ to a depth of shallower than 30 m as additional criterion, to reliably determine the ground motions and the corresponding design spectra taking into account the regional site characteristics in Korea.

Earthquake Engineering Bedrock Based on the Shear Wave Velocities of Rock Strata in Korea (국내 암반지층의 전단파속도에 근거한 지진공학적 기반암 결정)

  • Sun, Chang-Guk
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.273-281
    • /
    • 2014
  • In most current seismic design codes, design earthquake ground motions are defined by a reference spectrum, based on bedrock and site amplification factors that quantify the geotechnical dynamic conditions. Earthquake engineering bedrock is the fundamental geotechnical formation where the seismic waves are attenuated without amplification. To better define bedrock in an earthquake engineering context, shear wave velocity ($V_S$ ) data obtained from in-situ seismic tests were examined for several rock strata in Korea; these data were categorized by borehole drilling investigations. The $V_S$ values for most soft rock data in Korea are > 750 m/s, which is the threshold $V_S$ value for identifying engineering bedrock from a strong motion station. Conversely, VS values are < 750 m/s for 60% of $V_S$ data in weathered rock in Korea. Thus, the soft (or harder) rock strata below the weathered rock layer in Korea can be regarded as earthquake engineering bedrock.

Comparative Study on the Quantity Economic Analysis of Apartment Frames Using SDS Result of Dynamic Centrifuge Test at Pile Foundation (말뚝기초의 동적실험결과를 사용한 아파트 골조의 경제성 비교분석)

  • Kim, Sang-Yeon;Park, Jong-Bae;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.6 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Site coefficient and amplification factor of current domestic Seismic Design Code based on American Seismic Code, have no consideration for the domestic ground condition in which the base rock is normally placed within 30m form the surface. By previous studies, the measured spectral acceleration of the result of dynamic centrifugal test and analysis was smaller than the design spectral acceleration for the period over 1.5 sec. Accordingly, in this study structural analysis and design using dynamic centrifugal test result for pile foundation were achieved, and the quantity of concrete and reinforcement of wall frame was compared with each other. Comparison results of cost using KBC the design spectral acceleration of SC, SD site and SDS, the quantity of reinforcement using SDS for SD site was 17~23% smaller than using the design code SD site.

Assessment of Response Spectrum by Dynamic Centrifuge Test for the Pile Foundation into the Sand (동적 원심모형실험에 의한 사질토에 근입된 말뚝지지 기초의 응답 스펙트럼 분석)

  • Park, Yong-Boo;Park, Jong-Bae;Kim, Sang-Yeon;Kim, Dong-Soo
    • Land and Housing Review
    • /
    • v.5 no.1
    • /
    • pp.35-40
    • /
    • 2014
  • Site coefficient and amplification factor of current domestic Seismic Design Code (KBC-2009) have no consideration for the domestic ground condition in which the base rock is normally placed within 30m form the surface. Accordingly, in this study dynamic centrifugal test and analysis for pile foundation into sand and upper structure were achieved. and the response spectrums of free surface and basement were compared with each other. Within the period 1 sec., the measured spectral acceleration of free surface and basement was bigger than the design spectral acceleration of SC and SD site. However the measured spectral acceleration of free surface and basement for the period over 1.5 sec. was smaller than the design spectral acceleration of SC site. There was no severe difference of spectral acceleration according to the upper structure, embedded depth of foundation and free surface conditions. Consequently, normal domestic apartment housing for the period range over 1.5sec. could be design more economically applying these test result.

Effect of Loading Frequency Dependent Soil Behavior on Seismic Site Effect (하중의 주파수에 의하여 지배받은 흙의 동적 거동이 부지증폭현상에 미치는 영향)

  • Park Du-Hee;Hashash Y.M.A;Lee Hyun-Woo;Kim Jae-Yoen
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.3
    • /
    • pp.23-35
    • /
    • 2006
  • Equivalent linear analysis is widely used in estimating local seismic site effects. The soil behavior in the analysis is often assumed to be rate-independent and is not influenced by the seismic loading frequency. Laboratory results, however, indicate that cohesive soil behavior is greatly influenced by the loading frequency. A new equivalent linear analysis method that accounts for the loading frequency dependent soil behavior is developed and used to perform a series of one dimensional site response analyses. Results indicate that while frequency dependent shear modulus has limited influence on computed site response, frequency dependent soil damping greatly filters out high frequency components of the ground motion and thus results in lower response.

Correlations of Earthquake Accelerations and LPIs for Liquefaction Risk Mapping in Seoul & Gyeonggi-do Area based on Artificial Scenarios (서울, 경기지역의 시나리오별 액상화 위험지도 작성을 위한 지진가속도와 LPI 상관관계 분석)

  • Baek, Woohyun;Choi, Jaesoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.5-12
    • /
    • 2019
  • On November 15, 2017, a unpredictable liquefaction damage was occurred at the $M_L=5.4$ Pohang earthquake and after, many researches have been conducted in Korea. In Korea, where there were no cases of earthquake damage, it has been extremely neglectable in preparing earthquake risk maps and building earthquake systems that corresponded to prevention and preparation. Since it is almost impossible to observe signs and symptoms of drought, floods, and typhoons in advance, it is very effective to predict the impacts and magnitudes of seismic events. In this study, 14,040 borehole data were collected in the metropolitan area and liquefaction evaluation was performed using the amplification factor. Based on this data, liquefaction hazard maps were prepared for ground accelerations of 0.06 g, 0.14 g, 0.22 g, and 0.30 g, including 200years return period to 4,800years return period. Also, the correlation analysis between the earthquake acceleration and LPI was carried out to draw a real-time predictable liquefaction hazard map. As a result, 707 correlation equations in every cells in GIS map were proposed. Finally, the simulation for liquefaction risk mapping against artificial earthquake was performed in the metropolitan area using the proposed correlation equations.

Development of Probabilistic Seismic Coefficients of Korea (국내 확률론적 지진계수 생성)

  • Kwak, Dong-Yeop;Jeong, Chang-Gyun;Park, Du-Hee;Lee, Hong-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.87-97
    • /
    • 2009
  • The seismic site coefficients are often used with the seismic hazard maps to develop the design response spectrum at the surface. The site coefficients are most commonly developed deterministically, while the seismic hazarde maps are derived probabilistically. There is, hence, an inherent incompatibility between the two approaches. However, they are used together in the seismic design codes without a clear rational basis. To resolve the fundamental imcompatibility between the site coefficients and hazard maps, this study uses a novel probabilistic seismic hazard analysis (PSHA) technique that simulates the results of a standard PSHA at a rock outcrop, but integrates the site response analysis function to capture the site amplification effects within the PSHA platform. Another important advantage of the method is its ability to model the uncertainty, variability, and randomness of the soil properties. The new PSHA was used to develop fully probabilistic site coefficients for site classes of the seismic design code and another sets of site classes proposed in Korea. Comparisons highlight the pronounced discrepancy between the site coefficients of the seismic design code and the proposed coefficients, while another set of site coefficients show differences only at selected site classes.