• Title/Summary/Keyword: 지반재해위험지도

Search Result 21, Processing Time 0.024 seconds

The in-situ Assessment of GIS-Based Geotechnical Hazard Map (GIS기반 지반재해위험지도의 현장 적용성 평가)

  • Ryu, Ji Hyeob;Seo, Sang Hoon;Hwang, Ui Jin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.1
    • /
    • pp.35-45
    • /
    • 2013
  • In recent years, increasing damage due to landslides. So the government is to create a geotechnical hazard map. This study was to evaluate the applicability of the geotechnical hazard map by using 4 years of landslide cases in Seoul and Busan. And the in-situ aseessment has been carried out in test-bad area with specialists. Study has shown dangerous grade in geotechnical hazard map is more dangerous than the actual. Thus we can utilize geotechnical hazrd map in the purpose of the geotechnical hazard preliminary assessment. However, the in-site inspection and evaluation is required for in order to select the hazard area.

GIS-based Subsidence Hazard Map in Urban Area (GIS 기반의 도심지 지반침하지도 작성 사례)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Cho, Jin-Woo;Lee, Ju-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.5-14
    • /
    • 2017
  • The hazard maps for predicting collapse on natural slopes consist of a combination of topographic, hydrological, and geological factors. Topographic factors are extracted from DEM, including aspect, slope, curvature, and topographic index. Hydrological factors, such as soil drainage, stream-power index, and wetness index are most important factors for slope instability. However, most of the urban areas are located on the plains and it is difficult to apply the hazard map using the topography and hydrological factors. In order to evaluate the risk of subsidence of flat and low slope areas, soil depth and groundwater level data were collected and used as a factor for interpretation. In addition, the reliability of the hazard map was compared with the disaster history of the study area (Gangnam-gu and Yeouido district). In the disaster map of the disaster prevention agency, the urban area was mostly classified as the stable area and did not reflect the collapse history. Soil depth, drainage conditions and groundwater level obtained from boreholes were added as input data of hazard map, and disaster vulnerability increased at the location where the actual subsidence points. In the study area where damage occurred, the moderate and low grades of the vulnerability of previous hazard map were 12% and 88%, respectively. While, the improved map showed 2% high grade, moderate grade 29%, low grade 66% and very low grade 2%. These results were similar to actual damage.

Comparison of Analysis Model on Soil Disaster According to Soil Characteristics (지반특성에 따른 토사재해 해석 모델 비교)

  • Choi, Wonil;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.6
    • /
    • pp.21-30
    • /
    • 2017
  • This study analyzed the ground characteristics region by designating 3 research areas, Anrim-dong in Chungju City, Busa-dong in Daejeon Metropolitan City and Sinan-dong in Andong City out of the areas subject to concentrated management to prepare for sediment disaster in downtown areas. The correlation between ground characteristics were observed by using characteristics (crown density, root cohesion, rainfall characteristics, soil characteristics) and the risk areas were predicted through sediment disaster prediction modeling. Landslide MAPping (LSMAP), Stability Index MAPping (SINMAP) and Landslide Hazard MAP (LHMAP) were used for the comparative analysis of the hazard prediction model for sediment disaster. As a result of predicting the sediment disaster danger, in case of SINMAP which was generally used, excessive range was predicted as a hazardous area and in case of the Korea Forest Service's landslide hazard map (LHMAP), the smallest prediction area was assessed. LSMAP predicted a medium range of SINMAP and LHMAP as hazardous area. The difference of the prediction results is that the analysis parameters of LSMAP is more diverse and engineering than two comparative models, and it is found that more precise prediction is possible.

A New Methodology for Flood Prediction Mapping Using Levee Risk Map (제방 리스크 지도를 활용한 새로운 침수예상도 작성)

  • Lee, Jae Yeong;Park, Jun Hyung;Han, Kun Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.116-116
    • /
    • 2016
  • 최근 이상기후로 인해 다양한 원인으로 홍수가 발생하고 있으며, 이에 대한 대책으로 가상의 강우 시나리오에 대한 침수예상도가 작성되어 해당지역의 주민들에게 정보를 제공하고 있다. 하지만 이러한 침수예상도가 나타내는 모든 지역에 대해 예산을 투자하여 대비를 할 수 없는 실정이다. 이를 보완하기 위해 본 연구에서는 제방에 대한 수리학적, 지반공학적 위험도, 제방 자체의 성질과 특성을 반영한 취약도를 포함하는 제방 리스크 지도를 작성하여 외수범람에 대한 안전도를 등급화 하였다. 그 결과 침수예상도를 작성하는데 있어 제방 리스크 지도에서 등급이 높은, 즉 리스크가 높은 제방에 대한 재해대책을 수립하는 것이 효율적이다. 본 연구에서는 안성천 유역을 대상으로 제방 리스크 평가를 실시하고, 작성된 제방 리스크 지도를 바탕으로 제방의 붕괴 및 월류시나리오에 대해 1차원 외수범람 해석 및 2차원 침수해석을 실시하여 침수예상도를 작성하였다. 또한 기존의 침수예상도는 침수심에 대한 위험도만을 구분하여 나타내고 있지만, 본 연구에서는 다양한 요소에 대한 침수예상도를 제시함으로써 연구결과물이 재해예방 및 재해경감대책 수립을 위한 기초자료로 활용할 수 있을 것으로 기대된다.

  • PDF

Seismic Risk Assessment on Buried Electric Power Tunnels with the Use of Liquefaction Hazard Map in Metropolitan Areas (액상화 재해지도를 이용한 수도권 전력구 매설지반의 지진시 위험도 평가)

  • Baek, Woohyun;Choi, Jaesoon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.1
    • /
    • pp.45-56
    • /
    • 2019
  • In this study, the seismic risk has been evaluated by setting the bedrock acceleration to 0.154g which, was taking into consideration that the earthquake return period for the buried electric power tunnels in the metropolitan area to be 1,000 years. In this case, the risk assessment during the earthquake was carried out in three stages. In the first stage, the site classification was performed based on the site investigation data of the target area. Then, the LPI(Liquefaction Potential Index) was applied using the site amplification factor. After, candidates were selected using a hazard map. In the second stage, risk assessment analysis of seismic response are evaluated thoroughly after the recalculation of the LPI based on the site characteristics from the boring logs around the electric power area that are highly probable to be liquefied in the first stage. The third Stage visited the electric power tunnels that are highly probable of liquefaction in the second stage to compensate for the limitations based on the borehole data. At this time, the risk of liquefaction was finally evaluated based off of the reinforcement method used at the time of construction, the application of seismic design, and the condition of the site.

Seismic Risk Assessment of Bridges Using Fragility Analysis (지진취약도분석을 통한 교량의 지진위험도 평가)

  • Yi, Jin-Hak;Youn, Jin-Yeong;Yun, Chung-Bang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.31-43
    • /
    • 2004
  • Seismic risk assessment of bridge is presented using fragility curves which represent the probability of damage of a structure virsus the peak ground acceleration. In theseismic fragility analysis, the structural damage is defined using the rotational ductility at the base of the bridge pier, which is obtained through nonlinear dynamic analysis for various input earthquakes. For the assessment of seismic risk of bridge, peak ground accelerations are obatined for various return periods from the seismic hazard map of Korea, which enables to calculate the probability density function of peak ground acceleration. Combining the probability density function of peak ground acceleration and the seismic fragility analysis, seismic risk assessment is performed. In this study, seismic fragility analysis is developed as a function of not the surface motion which the bridge actually suffers, but the rock outcrop motion which the aseismic design code is defined on, so that further analysis for the seismic hazard assessment may become available. Besides, the effects of the friction pot bearings and the friction pendulum bearings on the seismic fragility and risk analysis are examined. Lastly, three regions in Korea are considered and compared in the seismic risk assessment.