• Title/Summary/Keyword: 지반구조물 상호작용해석

Search Result 252, Processing Time 0.025 seconds

Dynamic Infinite Elements for Soil-Structure Interaction Analysis (지반-구조물의 상호작용해석을 위한 동적무한요소)

  • Yang, Sin Chu;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.47-58
    • /
    • 1991
  • This paper presents dynamic infinite elements for soil-structure interaction analysis. In order to discretize the far field of the unbounded soil media, axisymmetric infinite elements which are capable of propagating multi-waves are proposed. An efficient numerical integration scheme for constructing the element characteristic matrices of the infinite elements in developed based on Gauss-Laguerre quadrature. The efficiency of the infinite elements is demonstrated by comparing the computed impedances of rigid circular footings on an elastic half space and on a layered half spaces with those obtained analytically.

  • PDF

Earthquake Response of Two Adjacent Buildings Founded at Different Depths (기초가 서로 다른 빌딩과 지반의 상호작용에 의한 지진응답 해석)

  • Lee Jong-Seh;Yoon Soon-Jong;Kim Dong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.433-442
    • /
    • 2004
  • The aim of this paper is to study the interaction between adjacent buildings with different foundation levels under earthquake loading conditions. Buildings and soil are represented by two different models. In the first case, the building itself is modeled with standard frame element, whereas the soil behavior is stimulated by a special grid model. In the second case, the building and soil are represented by plane stress or plane strain elements. The modulus of elasticity of the 9round as well as the varying relations of inertia have a strong influence on the section forces within the buildings. The Interaction between the two buildings is demonstrated and discussed via numerical examples using the proposed method.

A Study on 3D Evaluation and Reduction Method for Vibration of Track-Roadbed due to Railway Load (열차하중으로 인한 궤도-지반의 3D 진동평가 및 저감방법에 관한 연구)

  • Kang, Bo-Soon
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • The paper describes four practical cases of railway structure concerning a three-dimensional numerical approach to analyse dynamic soil-structure interaction(SSI)of railway tracks on layered soil under transient load in the time domain. The SSI-Model has been implemented in TDAPIII accounting for nonlinear properties of the track and soil. The approach can be also be used to calculate vibration propagation in the soil and its effect on nearby buildings and structure. The Method is applied to analyse the dynamic response of railway tracks due to a moving wheel set. Finally some sample are given in order to reduce the vibration at the point of emission, at the transmission path and the structure itself.

Effects of Stiffness Characteristics of Super-Structure on Soil-Structure Interaction (지반(地盤)에 대한 구조물(構造物)의 상대강도(相對剛度)가 지반(地盤)-구조물(構造物) 상호작용(相互作用)에 미치는 영향(影響))

  • Park, Hyung Ghee;Joe, Yang Hee;Lee, Yong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.123-132
    • /
    • 1985
  • The flexibility of base material gives considerable influences on seismic responses of a structure. The effects of relative stiffness between super-structure and base material on dynamic soil-structure interaction are evaluated by parametric studies. Two 5-story buildings are used for the study; one is shearwall structure with relatively higher fundamental frequency and the other is frame structure with relatively lower fundamental frequency. The structures are modeled as beam-sticks coupled with springs and dashpots representing the base material. Dynamic equilibrium equations of the soil-structure interaction system are sloved by mode superposition method using Rosset modal damping values. Soil-structure interaction effect is found to be major concern in seismic analysis of shearwall structure in most cases while it seldom becomes engineering problem in frame-type structure. It is also found that seismic responses at lower elevation of the super-structure are amplified though they decrease at higher elevation as soil-structure interaction effects of the system increase.

  • PDF

Response Analysis of Nearby Structures to Excavation-Induced Advancing Ground Movements (지반굴착 유발 진행성 지반변위에 의한 인접구조물의 거동분석)

  • Son, Moorak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4C
    • /
    • pp.153-162
    • /
    • 2009
  • This paper investigates the effects of excavation-induced ground movements on nearby structures, considering soil-structure interactions of different soil and structural characteristics. The response of four and two-story block structures, which are subjected to excavation-induced advancing ground movements, are investigated in different soil conditions using numerical analysis. The structures for numerical analysis are modelled to have cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of four and two-story block structures are investigated with advancing ground movement phases and compared with the response of structures which are subjected to excavation-induced total ground movement. The response of structures is compared among others in terms of the magnitude and shape of deformations and cracks in structures for different structure and ground conditions. The results of the comparison provide a background for better understandings for controlling and minimizing building damage on nearby structures due to excavation-induced ground movements.

Identification of the Hualien Soil-Structure Interaction System Using Earthquake Response Data (지진계측자료를 사용한 화련 지반-구조물 상화작용계의 미지계수 추정)

  • 최준성
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.249-258
    • /
    • 2000
  • 본 논문에서는 지반-구조물 상호작용계의 강성에 관련된 물성값들을 지진계측결과를 바탕으로 효과적으로 추정할 수 있는 방법에 대해 연구하였으며 제안된 방법의 검증은 국제공동 연구의 일환으로 최근 대만의 화련에 건설된 대형지진시험구조물에서 계측된 지진 응답을 사용하여 수행하였다. 지반-구조물 상호작용계의 지진응답해석을 위해서 구조물과 근역지반은 축대칭유한요소로 모형화하고 원역지반은 축대칭 무한요소를 사용하였으며 이때 입력 지진하중은 부구조법에 근거한 파입력기법이 고려되었다 지진계측결과를 사용하여 각 영역의 물성값을 제약적 최속강하법을 사용하여 추정하였는데 추정된 계수들을 사용하여 계산된 지진응답이 계측치와 매우 잘 일치하여 추정결과의 타당성을 검증할 수 있었다.

  • PDF

Evaluation of Seismic Performance of Takahama Wharf Using Nonlinear Effective Stress Analysis (비선형 유효응력해석을 이용한 Takahama 잔교식 안벽의 내진성능 평가)

  • Tran, Nghiem Xuan;Lee, Jin-sun;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.4
    • /
    • pp.47-56
    • /
    • 2017
  • Aseismic designs of pile-supported wharves are commonly performed utilizing simplified dynamic analyses, such as multi-mode spectral analyses. Simplified analyses can be useful for evaluating the limit state of structures. However, several pile-supported wharves, that have been damaged during past earthquakes, have shown that soil deformation and soil-pile dynamic interaction significantly affect the entire behavior of structures. Such behavior can be captured by performing nonlinear effective stress analyses, which can properly consider the dynamic interactions among the soil-pile-structure. The present study attempts to investigate the earthquake performance of a pile-supported wharf utilizing a three-dimensional numerical method. The damaged pile-supported wharf at the Kobe Port during the Hyogo-ken Nambu earthquake (1995) is selected to verify the applicability of the numerical modeling. Analysis results showed a suitable agreement with the observations on the damaged wharf, and the significant effect of excess pore pressure development and pile-soil dynamic interaction on the seismic performance of the wharf.

Verification of Linear FE Model for Nonlinear SSI Analysis by Boundary Reaction Method (경계반력법에 의한 비선형 SSI 해석을 위한 선형 FE 해석모델 검증)

  • Lee, Gye Hee;Hong, Kwan Young;Lee, Eun Haeng;Kim, Jae Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.95-102
    • /
    • 2014
  • In this paper, a coupling scheme for applying finite element analysis(FEA) programs, such as, LS-DYNA and MIDAS/Civil, to a nonlinear soil structure interaction analysis by the boundary reaction method(BRM) is presented. With the FEA programs, the structure and soil media are discretized by linear or nonlinear finite elements. To absorb the outgoing elastic waves to unbounded soil region as much as possible, the PML elements and viscous-spring elements are used at the outer FE boundary, in the LS-DYNA model and in MIDAS/Civil model, respectively. It is also assumed that all the nonlinear elements in the problem are limited to structural region. In this study, the boundary reaction forces for the use in the BRM are calculated using the KIESSI-3D program by solving soil-foundation interaction problem subjected to incident seismic waves. The effectiveness of the proposed approach is demonstrated with a linear SSI seismic analysis problem by comparing the BRM solution with the conventional SSI solution. Numerical comparison indicates that the BRM can effectively be applied to a nonlinear soil-structure analysis if motions at the foundation obtained by the BRM for a linear SSI problem excluding the nonlinear structure is conservative.

A validity study on SSI analysis by comparing the complete system model and the underground structure fixed-end model (연속체 모델과 지하구조물 고정단 모델의 비교를 통한 SSI 해석의 타당성 연구)

  • You, Kwang-Ho;Kim, Seung-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.757-772
    • /
    • 2018
  • Recently, earthquakes have occurred in large cities such as Gyeongju and Pohang, and seismic analysis studies have been actively conducted in various fields. However, since most of the previous seismic analyses have dealt with ground structures and the ground separately, there is a lack of a study on the complete soil-structure dynamic interaction. Therefore, in this study, a sensitivity analysis is conducted with MIDAS GEN and MIDAS GTS NX to apply the underground structure fixed-end model considering only the building and the complete system model considering both the building and the ground, respectively and the validity of dynamic analysis considering SSI is examined. As a result of the study, in most conditions it is found that the maximum horizontal displacement of the tall building in case of the underground structure fixed-end model is estimated to be smaller, the bending stress is larger, and the range of the weak part is smaller than that of the complete system model. Therefore, it is expected to be more reasonable to use the complete system model considering soil-structure interaction in seismic analysis.

지반-구조물 상호작용을 고려한 축대칭 원전 구조물의 비선형 지진해석

  • 윤정방;최준성;김재민
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.333-338
    • /
    • 1996
  • 강진에 의한 원전구조물의 동적해석시 지반의 비선형특성은 반드시 고려해야 할 사항이다. 지반의 비선형특성은 지반-구조계의 동적응답을 구하는 과정에서 가장 중요한 요소중의 하나며 이를 고려한 비선형 지진해석은 일반적으로 매우 복잡하고 정해를 구하기가 매우 어려운 문제다. 본 연구에서는 비선형 해법으로 널리 사용되고 있는 등가선형화방법을 사용하여 계측결과가 있는 TEPSCO 비선형 지진문제를 해석하였으며 이 방법의 정확도와 적용성을 분석하였다. 아울러 축대칭기법을 사용하여 비선형지진해석을 수행할때의 문제점에 관해서도 검토하였다.

  • PDF