• Title/Summary/Keyword: 지면 반사

Search Result 72, Processing Time 0.023 seconds

Simulation Study on the Multipath Tracking Errors (다중경로 추적오차 모사 알고리즘 연구)

  • Kim, Min-Nyun;Lim, Joong-Soo;Chae, Gyoo-Soo;Ye, Sung-Hyuck;Ryu, Chung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2274-2279
    • /
    • 2009
  • This paper describes the radar tracking errors due to the presence of surface reflected waves. We investigate the previous studies on tracking errors and developed a tracking error estimation program using Matlab. We suggest an accurate error prediction method by considering the antenna beamwidth and surface reflection coefficient. The presented results well agree with theoretical predictions.

GPR Exploration of Non-metallic Water Pipes Linked with Network RTK (네트워크 RTK와 연계한 비금속 상수관의 GPR 탐사)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.296-301
    • /
    • 2021
  • GPR is used for non-destructive investigations, ground investigations, and underground facilities exploration at construction sites. In this study, the applicability to GPR exploration of water pipes linked to Network RTK was presented. Data on the water supply pipes in the study site were acquired using GPR, and the location and depth of buried water pipes could be measured. The accuracy was evaluated from the GNSS observation performance and showed a deviation of -0.16m ~ 0.15m. This satisfied the equipment performance of the public survey work regulation, suggesting that the exploration of water pipes using GPR is possible. Because GPR does not require grounding installation, as in conventional metal pipe detectors, it will increase the efficiency of work for underground facility exploration. Exploration using GPR can acquire the location and depth of metallic and non-metallic underground facilities, so it can be utilized in the construction of a GIS system. If a comparison of the exploration characteristics is carried out, it will be possible to present various uses of underground facility exploration using GPR.

Fading Effects and Antenna Diversity Tests of WAVE Communications (WAVE 통신의 페이딩 효과와 안테나 다이버시티 실험)

  • Choi, Hyun-Kyun;Oh, Hyun-Seo;Cho, Woong;Jang, Youn-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.10
    • /
    • pp.967-973
    • /
    • 2014
  • WAVE (Wireless Access in Vehicular Environments) communications is the core technology for C-ITS (Cooperative-Intelligent Transportation System) which communicates with the road infrastructure and other vehicles to exchange traffic information and service while driving. In this paper, to analyze the performance degradation according to the distance between WAVE communication terminals, we derived the formulas for the locations of down-fade and up-fade points by using the two-ray ground reflection model, and verified these theoretical results by comparing with those of RSSI (Receiver Signal Strength Indicator) measurements. In addition, to solve the problem of down-fade, we suggested the WAVE communication with the antenna diversity and experimentally confirmed the performance improvement in the highway LOS (Line Of Sight) environments.

The comparative analysis of KOMPSAT-3 based surface normalized difference vegetation index: Application of GeoEye data (다목적실용위성 3호의 지표 정규식생지수 산출 및 비교 분석: GeoEye 자료 활용)

  • Yeom, Jong-Min
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.80-86
    • /
    • 2014
  • In this study, we the estimated surface normalized difference vegetation index by using the KOrea Multi-Purpose SATellite-3 (KOMPSAT-3) multi-spectral images for comparative analysis. The estimated NDVI from KOMPSAT-3 is used as for comparison with the high resolution GeoEye products. The geometry conditions for atmospheric effects are selected from meta files of KOMPSAT-3 bundle data. The used geometry conditions are consist of solar zenith angle, solar azimuth angle, viewing zenith angle, viewing azimuth angle, and date. And, Atmospheric effects such as attenuation, scattering and absorption were physically simulated from water vapor, ozone and aerosol information. Generally, although ground measurements are important for accurate information, in this study, MODIS atmospheric products are used as atmospheric constituents. The surface reflectance from radiative transfer model is utilized for estimating vegetation index. The present study, to reduce atmospheric and geometry conditions between KOMPSAT-3 and GeoEye having difference observation characteristics, data acquisition time is carefully determined for reliable vegetation spectral characteristics.

Analysis of Radio Attenuation Characteristics over 1 to 6 GHz for the Ground Material and Antenna Height in Roadway Open Environment (도로 개방 환경에서 바닥면 재질과 안테나 높이에 따른 1~6 GHz 전파 감쇄 특성 분석)

  • Choi, Jae-Won;Kim, Dong-Woo;Oh, Soon-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.397-404
    • /
    • 2020
  • In this paper, the propagating-wave attenuation characteristics at 1, 3, and 6 GHz in the open environment roadway where the ground-reflected wave dominates are analyzed through a propagation model simulation using a ray-tracing method and propagation measurements. Simulations has been performed by varying the ground material, the transmitting antenna height, and the receiving antenna height. The measurements were conducted using a directional transmission antenna installed at 10 m mast and a omnidirectional receiving antenna installed at 1.5 m mast in an open environment. Comparison of simulation and measurement results confirms that the null points having the weak signal strength depend on those parameters. Although this research has been investigated for the wide road, the derived result could be useful for installing the transmitter and receiver in the roadway open environment.

High resolution groud penetrating image radar using an ultra wideband (UWB) impulse waveform (초광대역 임펄스를 이용한 고해상도 지반탐사 이미지 레이더)

  • Park Young-Jin;Kim Kwan-Ho;Lee Won-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.101-106
    • /
    • 2005
  • A ground penetrating image radar (GPR) using an ultra wideband (UWB)impulse waveform is developed for non destructive detection of metallic pipelines buried under the ground. Dielectric constant of test field is measured and then a GPR system is designed for better detection up to 1 meter deep. By considering total path loss, volume of complete system, and resolution, upper and lower frequencies are chosen. First, a UWB impulse for the frequency bandwidth of the impulse is chosen with rising time less than 1 ns, and then compact planar UWB dipole antenna suitable for frequency bandwidth of a UWB impulse is designed. Also, to receive reflected signals, a digital storage oscilloscope is used. For measurement, a monostatic technique and a migration technique are used. For visualizing underground targets, simple image processing techniques of A-scan removal and B-scan average removal are applied. The prototype of the system is tested on a test field in wet clay soil and it is shown that the developed system has a good ability in detecting underground metal objects, even small targets of several centimeters.

Research on Performance Analysis for the Long Distance Air-Ground Wideband Common Data Link (장거리 공중-지상 채널환경에서 대용량 데이터링크의 수신성능 분석방법 연구)

  • Ryu, Young-Jae;Ahn, Jae Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.703-715
    • /
    • 2017
  • In this paper, we analyze the channel characteristics of the long distance air-ground wideband common data link and we propose a mathematical method to analyze the effect of narrowband and wideband interference of air-ground channel on the received signal of wideband data link. In this paper, we analyze the reception performance according to the communication distance using the proposed performance analysis method, and found out that the communication distance is limited by the narrowband and wideband interference of ground reflection wave. As a result of the performance analysis of the method of controlling the receiving antenna upward, not only the narrow band but also the wideband interference is effectively reduced, so that the communication distance is increased even in the existing wideband data link not including the equalizer.

An Analysis on the Degradation of Elevation Angle Accuracy Due to the Multi-Path Effect Using a Phased Array Antenna and the Beam Pattern Optimization to Minimize Its Degradation (위상배열 안테나를 활용한 다중 경로 효과에 의한 고각 정확도 열화 분석 및 열화 최소화를 위한 빔 패턴 최적화)

  • Kim, Young-Wan;Lee, JaeMin;Chae, Heeduck;Jin, Hyung-suk;Park, Jongkuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1036-1043
    • /
    • 2016
  • In this paper, an analysis about the elevation angle accuracy degradation of an APAR(Airport Precision Approach Radar) due to the multi-path effect using a phased array antenna was performed. An APAR installed around a runway of airport will be continuously affected in a runway surface of the fixed environment. In this paper, an analysis about the elevation angle accuracy degradation of APAR due to the multi-path effect of runway surface was conducted through a calculation of monopluse slope and sum/difference beam pattern analysis of array antenna. Also, a difference pattern for monopulse to minimize this degradation was optimized in an appropriate configuration to improve a elevation angle accuracy. Finally, a degree of improvement of elevation angle accuracy was confirmed by calculating a monopulse slope including the ground reflection after applying optimized difference patterns of array antenna.

A Preliminary Research of the Bifacial PV System Under Installation Conditions (설치환경 및 조건에 따른 양면수광형 태양광발전시스템의 기초 특성 연구)

  • Jang, Ju-Hee;Kwon, Oh-Hyun;Lee, Sang-Hyuk;Shin, Min-Su;Lee, Kyung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.6
    • /
    • pp.51-63
    • /
    • 2018
  • Nowadays the bifacial PV system market and its applications are increasing rapidly. The performance of the bifacial PV system take advantage of its rear surface irradiance. Also, the ground albedo, PV module tilt and azimuth, PV module installation height, shading effect and module temperature are factors of bifacial PV system performance. This paper investigates how the performance of bifacial PV system is influenced by above factors. First, we analyzed the energy yield depending on PV module installation by simulation. Secondly, we compare energy performance evaluation of monofacial and bifacial module on different weather condition by experiment. Thirdly, we tested the albedo effect and checked operating characteristics using Dupont Tyvek material for the bifacial PV module. Fourthly, we check the shading effect of bifacial PV module on bypass diode operating. Finally, we applied the bifacial PV module in the nearby subway station for the noise reduction barrier using a qualified simulation program. In summary, we confirm that the energy performance superiority of the bifacial PV module has a lot of application use including road. Also, we have confirmed the bifacial module and inverter design should be considered by rear surface irradiance.

The Influence of the Landscaping Shade Membrane's Brightness on the Mean Radiant Temperature(MRT) of Summer Outdoor (조경용 차양막 재료의 명도가 하절기 옥외공간의 평균복사온도에 미치는 영향)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.5
    • /
    • pp.65-73
    • /
    • 2015
  • The purpose of this study was to compare the Mean Radiant Temperature(MRT) under two landscaping shade membranes, white and black, with those of natural outdoor spaces at summer midday. An additional perforated black shading net was applied and compared for the consideration of the practical application. The average MRT at the height of 2.4m, 10cm below the membranes of black, white, and perforated black were $49.1^{\circ}C$, $41.6^{\circ}C$ and $36.8^{\circ}C$ respectively, while that of open sky was $41.8^{\circ}C$. This indicates that a closer position to the darker membrane caused a higher MRT. At the height of 1.1m and 1.7m, the difference of MRT between the black and the white membranes was slight, while the value of white was unexpectedly higher than the black. The MRT of black perforated net showed the lowest value at every height. The black membrane absorbed more solar radiation than the white, which caused the greater release of long wave radiation and higher temperature near the membrane itself. In spite of the higher albedo of the white membrane, the higher solar radiation transmittance rate of which seemed to cause the slightly higher MRT than the black at the hight of 1.1m and 1.7m. In summary, the performance of the black membrane was slightly better than the white in terms of the air conditioning of the human related space around the height of 1.1m and 1.7m, when the shading membranes were at 2.5m height.