• Title/Summary/Keyword: 지면효과를 받는 날개

Search Result 11, Processing Time 0.179 seconds

A Study on the Dynamic Ground Effect on Three-Dimensional Wings Using a Time Domain Panel Method (시간영역패널법을 사용한 3차원 날개의 동적지면효과 연구)

  • Han, Cheol-Heui;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.10-17
    • /
    • 2002
  • A study on the dynamic ground effect on three-dimensional wings is done using an indirect boundary element method(unsteady panel method). An integral equation is obtained by applying Green's theorem on all surfaces of the fluid domain. Constant strength dipole and source panels arc distributed on a wing's surface. The wake sheet is represented by constant strength dipoles. At each time step, a row of wake panels is assumed to be convected from the trailing edge of the wing. The tip vortex behind wings in dynamic ground effect moves outward. The amplitudes of the aerodynamic coefficients for the wings in dynamic ground effect are augmented much more comparing to the case in static ground effect.

Papers : A Study on the Evolution of 2-D Unsteady Vortex Sheets in Ground Effect Using a Discrete Vortex Method (논문 : 이산와류법을 사용한 지면근처에서의 2 차원 비정상 와류면 전개연구)

  • Han, Cheol-Hui;Jo, Jin-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.57-63
    • /
    • 2002
  • 지면효과를 받는 와류면의 2차원 비정상 전개를 이산와류법을 사용하여 연구하였다. 와류면이 말리는 정확한 형상을 얻기 위하여, 두 개의 평활기법을 비교하였다. 타원형 하중분포를 가지는 지면가까이에 있는 날개의 후류말림에 대하여 본 연구 방법을 적용하였다. 날개가 지면가까이 비행할 때, 지면효과로 인하여 와류가 날개길이방향으로 이동하였으며 날개익단부근에서 와류면의 늘림운동이 발생하였다.

Numerical Simulation of Turbulent Flow around 2-D Airfoils in Ground Effect (CFD에 의한 2차원 지면 효과익 주위의 난류유동계산)

  • H.H. Chun;R.H. Chang;M.S. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.28-40
    • /
    • 2002
  • Turbulent flows around two-dimensional wing sections in ground effect are analysed by incompressible RANS equations and a finite difference method. The Baldwin-Lomax algebraic turbulence model is used to simulate high Reynolds number flows. The main purpose of this study is to clarify the two-dimensional ground effect and its flow characteristics due to different ground boundary conditions, i.e., moving and fixed bottom boundary. As a first step, to validate the present numerical code, the computational result of Clark-Y(t/C 11.7%) is compared with published numerical results and experimental data. Then, NACA4412 section in ground effect is calculated for various ground clearances with two bottom boundary conditions. According to the computational results, the difference in the lift and moment simulated with the two bottom boundary conditions is negligible, but the drag force simulated by the fixed bottom is to some extent smaller than that by the moving bottom. Therefore, it can be concluded that the drag force measured in a wind tunnel with the fixed bottom could be smaller than that with the moving bottom.

Aerodynamic Characteristics and Wing Tip Vortex Behavior of Three-Dimensional Symmetric Wing According to Heights (대칭단면을 갖는 3 차원 날개의 지면고도에 따른 공력특성과 끝단와 거동)

  • Yoo, Younghyun;Lee, Sanghwan;Lee, Juhee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1161-1169
    • /
    • 2012
  • A numerical study has been conducted to investigate the aerodynamic characteristics and behavior of a wing-tip vortex around a three-dimensional symmetric wing (NACA0015) in the vicinity of the ground. The aerodynamic characteristics and the wing-tip vortex change as a wing approaches the ground as a result of two different phenomena: the ground effect and the Venturi effect. The ground effect increases lift and decreases drag whereas the Venturi effect generates negative lift and increases drag suddenly. A symmetric airfoil experiences both phenomena with respect to changes in the angle of attack. In the case of a NACA0015 airfoil, the Venturi effect is dominant at small angles of attack but the ground effect is dominant at large angles of attack. Interestingly, both phenomena can be observed at the 4 degree of angle of attack. The vortex core moves inside a wing when the wing experiences the Venturi effect, whereas the vortex core moves outward when the wing experiences the ground effect.

Boundary Layer Separation Control with Fairing at the Junction of 3D Wings Under Ground Effect (페어링을 이용한 지면효과를 받는 3차원 날개 접합부의 경계층 박리 제어)

  • Cho Ji. H.;Moon Young. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.57-64
    • /
    • 2005
  • Aerodynamic characteristics of three-dimensional wings in ground effect for Aero-levitation Electric Vehicle(AEV) are numerically investigated for various fairing shapes at the junctions of 3D Wings. Numerical results show that a sizeable three-dimensional comer flow separation occurs with formation of an arch vortex at the junction of main and vertical wings, and also that this is predicted the main cause of the high lift-to-drag(L/D) reduction rate of the main wing. To avoid the comer flow separation, the main idea of this study is to reduce the cross section gradient of the comer flow tube near the trailing edge for various fairing shapes. Improvements on L/D ratios of the wings are pursued by breaking the coherence of superimposed adverse pressure gradients at the wing junction when the cross section gradient is changed slowly at the trailing edge.

  • PDF

Longitudinal Static Stability of Wings Flying Over Nonplanar Ground Surfaces (비평면 지면효과를 받는 날개들의 종방향 정안정성)

  • 김학기;조진수;한철희
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.12-17
    • /
    • 2006
  • Longitudinal static stability and steady aerodynamic characteristics of wings flying over nonplanar ground surfaces (rail and channel) are investigated using the boundary-element method. For a channel with it's fence higher than the wing height, the lift and the nose-down pitching moment increase as the gap between the wingtip and the fence decreases. For a rail with it's width wider than the wing span, the lift and the nose-down pitching moment increase as the rail height decreases. Longitudinal static stability of a single wing flying over nonplanar surfaces is worse than the case of the flat ground. In case of tandem wings, longitudinal static stability of the wings flying over the channel is better than the case of the flat ground. It is believed that the present results can be applied to the conceptual design of high-speed ground transporters.

Unsteady Aerodynamic Analysis of the Wing with Flaperon Flying over Nonplanar Ground Surface (비평면 지면 효과를 받는 플래퍼론이 있는 날개의 비정상 공력해석)

  • Joung, Yong-In;Cho, Jeong-Hyun;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.369-374
    • /
    • 2007
  • Unsteady aerodynamic characteristics of the wing with flaperon flying over nonplanar ground surface are investigated using a boundary-element method. The time-stepping method is used to simulate the wake shape according to the motion of the wing and flaperon over the surface or in the channel. The aerodynamic coefficient according to the periodic motion of the flaperon is shown as the shape of loop. The rolling moment coefficient of the wing flying in the channel is same as that of the wing flying over the ground surface. The variation range of pitching moment is wider when the wing flies in the channel than over the ground surface. The present method can provide various aerodynamic derivatives to secure the stability of superhigh speed vehicle flying over nonplanar ground surface using the present method.

Aerodynamic Investigation of Three-Dimensional Wings in Ground Effect for Aero-levitation Electric Vehicle (공기부상 전동 운행체의 지면효과를 받는 3차원 날개에 대한 공력해석 연구)

  • Oh H. J.;Seo J. H.;Moon Y. J.;Cho J. S.;Yoon Y. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.196-201
    • /
    • 2004
  • Aerodynamic characteristics of three-dimensional wings in ground effect for Aero-levitation Electric Vehicle(AEV) are numerically investigated for various ground clearances and wing spans at the Reynolds number of $2\times10^6$. Numerical results show that a sizeable three-dimensional flow separation occurs with formation of an arch vortex at the junction of main and vertical wings, and that this is conjectured a primary cause for the high lift-to-drag(L/D) reduction rate of the main wing, when the wing span is decreased. Improvements on L/D ratios of the wings with small spans are pursued by breaking the coherence of superimposed adverse pressure gradients at the wing junction.

  • PDF

Unsteady Flow and Noise Characteristics of a Wing in Ground Effect at Close Proximity (근접 지면효과를 받는 날개의 비정상 유동 소음 특성)

  • Seo J. H.;Kho S. R.;Moon Y. J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.783-786
    • /
    • 2002
  • The unsteady turbulent flow characteristics of NACA4406 airfoil at close proximity to the pound are numerically investigated, especially focused on the noise generation mechanism near the blunt trailing edge. The unsteady two-dimensional compressible Wavier-Stokes equations with a Spalart-Allmaras turbulence closure model are solved by the 6th-order compact scheme and the 4th-order Runge-Kutta scheme. The computation shows a noise generation by a feedback mechanism at the blunt tailing edge, where the acoustic-fluidic coupling occurs between the wall-reflected sound waves and the periodically disturbed turbulent shear layer.

  • PDF