• Title/Summary/Keyword: 지리정보 표준

Search Result 298, Processing Time 0.03 seconds

The Study of Land Surface Change Detection Using Long-Term SPOT/VEGETATION (장기간 SPOT/VEGETATION 정규화 식생지수를 이용한 지면 변화 탐지 개선에 관한 연구)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, In-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.111-124
    • /
    • 2010
  • To monitor the environment of land surface change is considered as an important research field since those parameters are related with land use, climate change, meteorological study, agriculture modulation, surface energy balance, and surface environment system. For the change detection, many different methods have been presented for distributing more detailed information with various tools from ground based measurement to satellite multi-spectral sensor. Recently, using high resolution satellite data is considered the most efficient way to monitor extensive land environmental system especially for higher spatial and temporal resolution. In this study, we use two different spatial resolution satellites; the one is SPOT/VEGETATION with 1 km spatial resolution to detect coarse resolution of the area change and determine objective threshold. The other is Landsat satellite having high resolution to figure out detailed land environmental change. According to their spatial resolution, they show different observation characteristics such as repeat cycle, and the global coverage. By correlating two kinds of satellites, we can detect land surface change from mid resolution to high resolution. The K-mean clustering algorithm is applied to detect changed area with two different temporal images. When using solar spectral band, there are complicate surface reflectance scattering characteristics which make surface change detection difficult. That effect would be leading serious problems when interpreting surface characteristics. For example, in spite of constant their own surface reflectance value, it could be changed according to solar, and sensor relative observation location. To reduce those affects, in this study, long-term Normalized Difference Vegetation Index (NDVI) with solar spectral channels performed for atmospheric and bi-directional correction from SPOT/VEGETATION data are utilized to offer objective threshold value for detecting land surface change, since that NDVI has less sensitivity for solar geometry than solar channel. The surface change detection based on long-term NDVI shows improved results than when only using Landsat.

Status of Agrometeorological Information and Dissemination Networks (농업기상 정보 및 배분 네트워크 현황)

  • Jagtap, Shrikant;Li, Chunqiang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.2
    • /
    • pp.71-84
    • /
    • 2004
  • There is a growing demand for agrometeorological information that end-users can use and not just interesting information. lo achieve this, each region/community needs to develop and provide localized climate and weather information for growers. Additionally, provide tools to help local users interpret climate forecasts issued by the National Weather Service in the country. Real time information should be provided for farmers, including some basic data. An ideal agrometeorological information system includes several components: an efficient data measuring and collection system; a modern telecommunication system; a standard data management processing and analysis system; and an advanced technological information dissemination system. While it is conventional wisdom that, Internet is and will play a major role in the delivery and dissemination of agrometeorological information, there are large gaps between the "information rich" and the "information poor" countries. Rural communities represent the "last mile of connectivity". For some time to come, TV broadcast, radio, phone, newspaper and fax will be used in many countries for communication. The differences in achieving this among countries arise from the human and financial resources available to implement this information and the methods of information dissemination. These differences must be considered in designing any information dissemination system. Experience shows that easy across to information more tailored to user needs would substantially increase use of climate information. Opportunities remain unexplored for applications of geographical information systems and remote sensing in agro meteorology.e sensing in agro meteorology.

Analysis of Urban Heat Island Intensity Among Administrative Districts Using GIS and MODIS Imagery (GIS 및 MODIS 영상을 활용한 행정구역별 도시열섬강도 분석)

  • SEO, Kyeong-Ho;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.2
    • /
    • pp.1-16
    • /
    • 2017
  • This study was conducted to analyze the urban heat island(UHI) intensity of South Korea by using Moderate Resolution Imaging Spectroradiometer(MODIS) satellite imagery. For this purpose, the metropolitan area was spatially divided according to land cover classification into urban and non-urban land. From the analysis of land surface temperature(LST) in South Korea in the summer of 2009 which was calculated from MODIS satellite imagery it was determined that the highest temperature recorded nationwide was $36.0^{\circ}C$, lowest $16.2^{\circ}C$, and that the mean was $24.3^{\circ}C$, with a standard deviation of $2.4^{\circ}C$. In order to analyze UHI by cities and counties, UHI intensity was defined as the difference in average temperature between urban and non-urban land, and was calculated through RST1 and RST2. The RST1 calculation showed scattered distribution in areas of high UHI intensity, whereas the RST2 calculation showed that areas of high UHI intensity were concentrated around major cities. In order to find an effective method for analyzing UHI by cities and counties, analysis was conducted of the correlation between the urbanization ratio, number of tropical heat nights, and number of heat-wave days. Although UHI intensity derived through RST1 showed barely any correlation, that derived through RST2 showed significant correlation. The RST2 method is deemed as a more suitable analytical method for measuring the UHI of urban land in cities and counties across the country. In cities and counties with an urbanization ratio of < 20%, the rate of increase for UHI intensity in proportion to increases in urbanization ratio, was very high; whereas this rate gradually declined when the urbanization ratio was > 20%. With an increase of $1^{\circ}C$ in RST2 UHI intensity, the number of tropical heat nights and heat wave days was predicted to increase by approximately five and 0.5, respectively. These results can be used for reference when predicting the effects of increased urbanization on UHI intensity.

On Method for LBS Multi-media Services using GML 3.0 (GML 3.0을 이용한 LBS 멀티미디어 서비스에 관한 연구)

  • Jung, Kee-Joong;Lee, Jun-Woo;Kim, Nam-Gyun;Hong, Seong-Hak;Choi, Beyung-Nam
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.169-181
    • /
    • 2004
  • SK Telecom has already constructed GIMS system as the base common framework of LBS/GIS service system based on OGC(OpenGIS Consortium)'s international standard for the first mobile vector map service in 2002, But as service content appears more complex, renovation has been needed to satisfy multi-purpose, multi-function and maximum efficiency as requirements have been increased. This research is for preparation ion of GML3-based platform to upgrade service from GML2 based GIMS system. And with this, it will be possible for variety of application services to provide location and geographic data easily and freely. In GML 3.0, it has been selected animation, event handling, resource for style mapping, topology specification for 3D and telematics services for mobile LBS multimedia service. And the schema and transfer protocol has been developed and organized to optimize data transfer to MS(Mobile Stat ion) Upgrade to GML 3.0-based GIMS system has provided innovative framework in the view of not only construction but also service which has been implemented and applied to previous research and system. Also GIMS channel interface has been implemented to simplify access to GIMS system, and service component of GIMS internals, WFS and WMS, has gotten enhanded and expanded function.

  • PDF

A Study on the Use of GIS-based Time Series Spatial Data for Streamflow Depletion Assessment (하천 건천화 평가를 위한 GIS 기반의 시계열 공간자료 활용에 관한 연구)

  • YOO, Jae-Hyun;KIM, Kye-Hyun;PARK, Yong-Gil;LEE, Gi-Hun;KIM, Seong-Joon;JUNG, Chung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.50-63
    • /
    • 2018
  • The rapid urbanization had led to a distortion of natural hydrological cycle system. The change in hydrological cycle structure is causing streamflow depletion, changing the existing use tendency of water resources. To manage such phenomena, a streamflow depletion impact assessment technology to forecast depletion is required. For performing such technology, it is indispensable to build GIS-based spatial data as fundamental data, but there is a shortage of related research. Therefore, this study was conducted to use the use of GIS-based time series spatial data for streamflow depletion assessment. For this study, GIS data over decades of changes on a national scale were constructed, targeting 6 streamflow depletion impact factors (weather, soil depth, forest density, road network, groundwater usage and landuse) and the data were used as the basic data for the operation of continuous hydrologic model. Focusing on these impact factors, the causes for streamflow depletion were analyzed depending on time series. Then, using distributed continuous hydrologic model based DrySAT, annual runoff of each streamflow depletion impact factor was measured and depletion assessment was conducted. As a result, the default value of annual runoff was measured at 977.9mm under the given weather condition without considering other factors. When considering the decrease in soil depth, the increase in forest density, road development, and groundwater usage, along with the change in land use and development, and annual runoff were measured at 1,003.5mm, 942.1mm, 961.9mm, 915.5mm, and 1003.7mm, respectively. The results showed that the major causes of the streaflow depletion were lowered soil depth to decrease the infiltration volume and surface runoff thereby decreasing streamflow; the increased forest density to decrease surface runoff; the increased road network to decrease the sub-surface flow; the increased groundwater use from undiscriminated development to decrease the baseflow; increased impervious areas to increase surface runoff. Also, each standard watershed depending on the grade of depletion was indicated, based on the definition of streamflow depletion and the range of grade. Considering the weather, the decrease in soil depth, the increase in forest density, road development, and groundwater usage, and the change in land use and development, the grade of depletion were 2.1, 2.2, 2.5, 2.3, 2.8, 2.2, respectively. Among the five streamflow depletion impact factors except rainfall condition, the change in groundwater usage showed the biggest influence on depletion, followed by the change in forest density, road construction, land use, and soil depth. In conclusion, it is anticipated that a national streamflow depletion assessment system to be develop in the future would provide customized depletion management and prevention plans based on the system assessment results regarding future data changes of the six streamflow depletion impact factors and the prospect of depletion progress.

Earthquake-induced Liquefaction Areas and Safety Assessment of Facilities (지진으로 인한 액상화 지역 및 시설물 안정성 평가)

  • Jeon, Sang-Soo;Heo, DaeYang;Lee, Sang-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.133-143
    • /
    • 2018
  • Liquefaction is one of secondary damages after earthquake and has been rarely reported until earthquake except Mw = 5.4 15 November 2017 Pohang earthquake in Korea. In recent years, Mw = 5.8 12 September 2016 Gyeongju earthquake and Mw = 5.4 15 November 2017 Pohang earthquake, which induced liquefaction, occurred in fault zone of Yangsan City located at south-eastern part of Korea. This explains that Korea is not safe against liquefaction induced by earthquake. In this study, the distance between the centroid of administrative district and the epicenter located at Yangsan fault, peak ground velocity (PGA) induced by both Mw = 5.0 and 6.5, and liquefaction potential index (LPI), which is calculated by using groundwater level and standard penetration test results of 274 in the area of Gimhae city located in adjacent to Nakdong river and across Yangsan fault, have been estimated and then kriging method using geographical information systems has been used to evaluate liquefaction effects on the damage of facilities. This study presents that Mw = 5.0 earthquake induces a small and low level of liquefaction resulting in slight damage of facilities but Mw = 6.5 earthquake induces a large and high level of liquefaction resulting in severe damage of facilities.

RAUT: An end-to-end tool for automated parsing and uploading river cross-sectional survey in AutoCAD format to river information system for supporting HEC-RAS operation (하천정비기본계획 CAD 형식 단면 측량자료 자동 추출 및 하천공간 데이터베이스 업로딩과 HEC-RAS 지원을 위한 RAUT 툴 개발)

  • Kim, Kyungdong;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1339-1348
    • /
    • 2021
  • In accordance with the River Law, the basic river maintenance plan is established every 5-10 years with a considerable national budget for domestic rivers, and various river surveys such as the river section required for HEC-RAS simulation for flood level calculation are being conducted. However, river survey data are provided only in the form of a pdf report to the River Management Geographic Information System (RIMGIS), and the original data are distributedly owned by designers who performed the river maintenance plan in CAD format. It is a situation that the usability for other purposes is considerably lowered. In addition, when using surveyed CAD-type cross-sectional data for HEC-RAS, tools such as 'Dream' are used, but the reality is that time and cost are almost as close as manual work. In this study, RAUT (River Information Auto Upload Tool), a tool that can solve these problems, was developed. First, the RAUT tool attempted to automate the complicated steps of manually inputting CAD survey data and simulating the input data of the HEC-RAS one-dimensional model used in establishing the basic river plan in practice. Second, it is possible to directly read CAD survey data, which is river spatial information, and automatically upload it to the river spatial information DB based on the standard data model (ArcRiver), enabling the management of river survey data in the river maintenance plan at the national level. In other words, if RIMGIS uses a tool such as RAUT, it will be able to systematically manage national river survey data such as river section. The developed RAUT reads the river spatial information CAD data of the river maintenance master plan targeting the Jeju-do agar basin, builds it into a mySQL-based spatial DB, and automatically generates topographic data for HEC-RAS one-dimensional simulation from the built DB. A pilot process was implemented.

A Thermal Time-Driven Dormancy Index as a Complementary Criterion for Grape Vine Freeze Risk Evaluation (포도 동해위험 판정기준으로서 온도시간 기반의 휴면심도 이용)

  • Kwon, Eun-Young;Jung, Jea-Eun;Chung, U-Ran;Lee, Seung-Jong;Song, Gi-Cheol;Choi, Dong-Geun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Regardless of the recent observed warmer winters in Korea, more freeze injuries and associated economic losses are reported in fruit industry than ever before. Existing freeze-frost forecasting systems employ only daily minimum temperature for judging the potential damage on dormant flowering buds but cannot accommodate potential biological responses such as short-term acclimation of plants to severe weather episodes as well as annual variation in climate. We introduce 'dormancy depth', in addition to daily minimum temperature, as a complementary criterion for judging the potential damage of freezing temperatures on dormant flowering buds of grape vines. Dormancy depth can be estimated by a phonology model driven by daily maximum and minimum temperature and is expected to make a reasonable proxy for physiological tolerance of buds to low temperature. Dormancy depth at a selected site was estimated for a climatological normal year by this model, and we found a close similarity in time course change pattern between the estimated dormancy depth and the known cold tolerance of fruit trees. Inter-annual and spatial variation in dormancy depth were identified by this method, showing the feasibility of using dormancy depth as a proxy indicator for tolerance to low temperature during the winter season. The model was applied to 10 vineyards which were recently damaged by a cold spell, and a temperature-dormancy depth-freeze injury relationship was formulated into an exponential-saturation model which can be used for judging freeze risk under a given set of temperature and dormancy depth. Based on this model and the expected lowest temperature with a 10-year recurrence interval, a freeze risk probability map was produced for Hwaseong County, Korea. The results seemed to explain why the vineyards in the warmer part of Hwaseong County have been hit by more freeBe damage than those in the cooler part of the county. A dormancy depth-minimum temperature dual engine freeze warning system was designed for vineyards in major production counties in Korea by combining the site-specific dormancy depth and minimum temperature forecasts with the freeze risk model. In this system, daily accumulation of thermal time since last fall leads to the dormancy state (depth) for today. The regional minimum temperature forecast for tomorrow by the Korea Meteorological Administration is converted to the site specific forecast at a 30m resolution. These data are input to the freeze risk model and the percent damage probability is calculated for each grid cell and mapped for the entire county. Similar approaches may be used to develop freeze warning systems for other deciduous fruit trees.