• Title/Summary/Keyword: 지도 군집화

Search Result 593, Processing Time 0.03 seconds

A study on development method for practical use of Big Data related to recommendation to financial item (금융 상품 추천에 관련된 빅 데이터 활용을 위한 개발 방법)

  • Kim, Seok-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.73-81
    • /
    • 2014
  • This study proposed development method for practical use techniques compromise data storage layer, data processing layer, data analysis layer, visualization layer. Data of storage, process, analysis of each phase can see visualization. After data process through Hadoop, the result visualize from Mahout. According to this course, we can capture several features of customer, we can choose recommendation of financial item on time. This study introduce background and problem of big data and discuss development method and case study that how to create big data has new business opportunity through financial item recommendation case.

The Spatial Change of Agglomerated Location and the Characteristics of Firm Movement in Korean Software Industry (소프트웨어 산업의 집적지 변화와 기업이동의 특성)

  • Hong, Il-Young
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.175-191
    • /
    • 2008
  • In the early stage of industrial development, most of software companies were agglomerated at the CBD(Central Business Districts) in Seoul. However, the spatial distribution pattern of Korean Software industry has been changed according to the propagation of broadband, the change in rents, the governmental policy for industrial districts. In this research, using the software year book at 1997 and 2007, the emerging new pattern was analyzed using spatial clustering analysis. As a results of research, the spatial distribution was expanded in morphological changes. However, it was found that there was not a significant difference in a degree of accumulation. In the aspect of behavioral movement of companies, they tend to be relocated from the CBD to urban fringes and their movement is related to the product life cycle in selecting the clustered place.

  • PDF

Biotope Type Classification based on the Vegetation Community in Built-up Area (시가화지역 식물군집 특성에 기초한 비오톱 유형분류)

  • Kim, Ji-Suk;Jung, Tae-Jun;Hong, Suk-Hwan
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.3
    • /
    • pp.454-461
    • /
    • 2015
  • This study aims to classify the biotope types based on the vegetation community in built-up areas by different land use and to map the plant communities. By classifying biotopes according to a taxonomic system, the characteristics of a biological community can be well-represented. The biotope classification indexes for the target area include human behavioral factors such as land use intensity, land-use patterns and land-cover types. The type classification was divided into four hierarchic ranks starting with Biotope Class, next by Biotope Group and Biotope Type and lastly by Biotope Sub-Type. The Biotope Class was first divided into two areas: the areas improved by humans and the areas unimproved by humans. The improved areas were again divided into permeable and non-permeable regions on the Biotope Group level. In the Biotope Type level, permeable paving areas were divided into areas with wide gap pavers and those with narrow gap pavers. The differential species of each biotope type are Lindera glauca, Conyza canadensis, Mazus pumilus, Vicia tetrasperma, Crepidiastrum sonchifolium, Zoysis japonica, Potentilla supina and Festuca arundinacea. The results of this study suggest that the biotope classification methodology, using a subjective phytosociological approach, is a useful and valuable tool and the results also suggest the possibility of applying more objective and scientific methods in mapping and classifying various environments.

Clustering-Based Recommendation Using Users' Preference (사용자 선호도를 사용한 군집 기반 추천 시스템)

  • Kim, Younghyun;Shin, Won-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.277-284
    • /
    • 2017
  • In a flood of information, most users will want to get a proper recommendation. If a recommender system fails to give appropriate contents, then quality of experience (QoE) will be drastically decreased. In this paper, we propose a recommender system based on the intra-cluster users' item preference for improving recommendation accuracy indices such as precision, recall, and F1 score. To this end, first, users are divided into several clusters based on the actual rating data and Pearson correlation coefficient (PCC). Afterwards, we give each item an advantage/disadvantage according to the preference tendency by users within the same cluster. Specifically, an item will be received an advantage/disadvantage when the item which has been averagely rated by other users within the same cluster is above/below a predefined threshold. The proposed algorithm shows a statistically significant performance improvement over the item-based collaborative filtering algorithm with no clustering in terms of recommendation accuracy indices such as precision, recall, and F1 score.

Analyzing data-related policy programs in Korea using text mining and network cluster analysis (텍스트 마이닝과 네트워크 군집 분석을 활용한 한국의 데이터 관련 정책사업 분석)

  • Sungjun Choi;Kiyoon Shin;Yoonhwan Oh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.63-81
    • /
    • 2023
  • This study endeavors to classify and categorize similar policy programs through network clustering analysis, using textual information from data-related policy programs in Korea. To achieve this, descriptions of data-related budgetary programs in South Korea in 2022 were collected, and keywords from the program contents were extracted. Subsequently, the similarity between each program was derived using TF-IDF, and policy program network was constructed accordingly. Following this, the structural characteristics of the network were analyzed, and similar policy programs were clustered and categorized through network clustering. Upon analyzing a total of 97 programs, 7 major clusters were identified, signifying that programs with analogous themes or objectives were categorized based on application area or services utilizing data. The findings of this research illuminate the current status of data-related policy programs in Korea, providing policy implications for a strategic approach to planning future national data strategies and programs, and contributing to the establishment of evidence-based policies.

A genetic algorithm for generating optimal fuzzy rules (퍼지 규칙 최적화를 위한 유전자 알고리즘)

  • 임창균;정영민;김응곤
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.767-778
    • /
    • 2003
  • This paper presents a method for generating optimal fuzzy rules using a genetic algorithm. Fuzzy rules are generated from the training data in the first stage. In this stage, fuzzy c-Means clustering method and cluster validity are used to determine the structure and initial parameters of the fuzzy inference system. A cluster validity is used to determine the number of clusters, which can be the number of fuzzy rules. Once the structure is figured out in the first stage, parameters relating the fuzzy rules are optimized in the second stage. Weights and variance parameters are tuned using genetic algorithms. Variance parameters are also managed with left and right for asymmetrical Gaussian membership function. The method ensures convergence toward a global minimum by using genetic algorithms in weight and variance spaces.

Discretization of Continuous-Valued Attributes considering Data Distribution (데이터 분포를 고려한 연속 값 속성의 이산화)

  • Lee, Sang-Hoon;Park, Jung-Eun;Oh, Kyung-Whan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.391-396
    • /
    • 2003
  • This paper proposes a new approach that converts continuous-valued attributes to categorical-valued ones considering the distribution of target attributes(classes). In this approach, It can be possible to get optimal interval boundaries by considering the distribution of data itself without any requirements of parameters. For each attributes, the distribution of target attributes is projected to one-dimensional space. And this space is clustered according to the criteria like as the density value of each target attributes and the amount of overlapped areas among each density values of target attributes. Clusters which are made in this ways are based on the probabilities that can predict a target attribute of instances. Therefore it has an interval boundaries that minimize a loss of information of original data. An improved performance of proposed discretization method can be validated using C4.5 algorithm and UCI Machine Learning Data Repository data sets.

Hand Shape Detection and Recognition using Self Organized Feature Map(SOMF) and Principal Component Analysis (자기 조직화 특징 지도(SOFM)와 주성분 분석을 이용한 손 형상 검출 및 인식)

  • Kim, Kyoung-Ho;Lee, Kee-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.11
    • /
    • pp.28-36
    • /
    • 2013
  • This study proposed a robust detection algorithm. It detects hands more stably with respect to changes in light and rotation for the identification of a hand shape. Also it satisfies both efficiency of calculation and the function of detection. The algorithm proposed segmented the hand area through pre-processing using a hand shape as input information in an environment with a single camera and then identified the shape using a Self Organized Feature Map(SOFM). However, as it is not easy to exactly recognize a hand area which is sensitive to light, it has a large degree of freedom, and there is a large error bound, to enhance the identification rate, rotation information on the hand shape was made into a database and then a principal component analysis was conducted. Also, as there were fewer calculations due to the fewer dimensions, the time for real-time identification could be decreased.

An Automatic Object Extraction Method Using Color Features Of Object And Background In Image (영상에서 객체와 배경의 색상 특징을 이용한 자동 객체 추출 기법)

  • Lee, Sung Kap;Park, Young Soo;Lee, Gang Seong;Lee, Jong Yong;Lee, Sang Hun
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.459-465
    • /
    • 2013
  • This paper is a study on an object extraction method which using color features of an object and background in the image. A human recognizes an object through the color difference of object and background in the image. So we must to emphasize the color's difference that apply to extraction result in this image. Therefore, we have converted to HSV color images which similar to human visual system from original RGB images, and have created two each other images that applied Median Filter and we merged two Median filtered images. And we have applied the Mean Shift algorithm which a data clustering method for clustering color features. Finally, we have normalized 3 image channels to 1 image channel for binarization process. And we have created object map through the binarization which using average value of whole pixels as a threshold. Then, have extracted major object from original image use that object map.

Selecting Representative Views of 3D Objects By Affinity Propagation for Retrieval and Classification (검색과 분류를 위한 친근도 전파 기반 3차원 모델의 특징적 시점 추출 기법)

  • Lee, Soo-Chahn;Park, Sang-Hyun;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.828-837
    • /
    • 2008
  • We propose a method to select representative views of single objects and classes of objects for 3D object retrieval and classification. Our method is based on projected 2D shapes, or views, of the 3D objects, where the representative views are selected by applying affinity propagation to cluster uniformly sampled views. Affinity propagation assigns prototypes to each cluster during the clustering process, thereby providing a natural criterion to select views. We recursively apply affinity propagation to the selected views of objects classified as single classes to obtain representative views of classes of objects. By enabling classification as well as retrieval, effective management of large scale databases for retrieval can be enhanced, since we can avoid exhaustive search over all objects by first classifying the object. We demonstrate the effectiveness of the proposed method for both retrieval and classification by experimental results based on the Princeton benchmark database [16].