• Title/Summary/Keyword: 지능형 정보 공간

Search Result 326, Processing Time 0.027 seconds

User-driven Context-aware Service (사용자주도형 상황인식서비스)

  • Park, Jeongkyu;Lee, Keung Hae
    • Journal of Internet Computing and Services
    • /
    • v.14 no.4
    • /
    • pp.1-12
    • /
    • 2013
  • Context-awareness is a computing technology that automatically delivers useful services to users based on their situation. Most previous studies on context-awareness adopted the view that the user simply is a consumer of what the developer creates. Few studies addressed catering to the need of personalized services for the user. They are either too complex for the user to grasp or unable to express many useful services due to their weak expressive power. To address these issues, we propose Dobby as a new model and architecture for user-driven context-aware service development. Dobby enables the user to create services that are more suited to his personal preferences. We argue that Dobby offers an enhanced method for defining personalized context-aware services over existing methods.

Application and development of a machine learning based model for identification of apartment building types - Analysis of apartment site characteristics based on main building shape - (머신러닝 기반 아파트 주동형상 자동 판별 모형 개발 및 적용 - 주동형상에 따른 아파트 개발 특성분석을 중심으로 -)

  • Sanguk HAN;Jungseok SEO;Sri Utami Purwaningati;Sri Utami Purwaningati;Jeongseob KIM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.2
    • /
    • pp.55-67
    • /
    • 2023
  • This study aims to develop a model that can automatically identify the rooftop shape of apartment buildings using GIS and machine learning algorithms, and apply it to analyze the relationship between rooftop shape and characteristics of apartment complexes. A database of rooftop data for each building in an apartment complex was constructed using geospatial data, and individual buildings within each complex were classified into flat type, tower type, and mixed types using the random forest algorithm. In addition, the relationship between the proportion of rooftop shapes, development density, height, and other characteristics of apartment complexes was analyzed to propose the potential application of geospatial information in the real estate field. This study is expected to serve as a basic research on AI-based building type classification and to be utilized in various spatial and real estate analyses.

Methodology for Vehicle Trajectory Detection Using Long Distance Image Tracking (원거리 차량 추적 감지 방법)

  • Oh, Ju-Taek;Min, Joon-Young;Heo, Byung-Do
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.159-166
    • /
    • 2008
  • Video image processing systems (VIPS) offer numerous benefits to transportation models and applications, due to their ability to monitor traffic in real time. VIPS based on a wide-area detection algorithm provide traffic parameters such as flow and velocity as well as occupancy and density. However, most current commercial VIPS utilize a tripwire detection algorithm that examines image intensity changes in the detection regions to indicate vehicle presence and passage, i.e., they do not identify individual vehicles as unique targets. If VIPS are developed to track individual vehicles and thus trace vehicle trajectories, many existing transportation models will benefit from more detailed information of individual vehicles. Furthermore, additional information obtained from the vehicle trajectories will improve incident detection by identifying lane change maneuvers and acceleration/deceleration patterns. However, unlike human vision, VIPS cameras have difficulty in recognizing vehicle movements over a detection zone longer than 100 meters. Over such a distance, the camera operators need to zoom in to recognize objects. As a result, vehicle tracking with a single camera is limited to detection zones under 100m. This paper develops a methodology capable of monitoring individual vehicle trajectories based on image processing. To improve traffic flow surveillance, a long distance tracking algorithm for use over 200m is developed with multi-closed circuit television (CCTV) cameras. The algorithm is capable of recognizing individual vehicle maneuvers and increasing the effectiveness of incident detection.

  • PDF

A Study on forest fires Prediction and Detection Algorithm using Intelligent Context-awareness sensor (상황인지 센서를 활용한 지능형 산불 이동 예측 및 탐지 알고리즘에 관한 연구)

  • Kim, Hyeng-jun;Shin, Gyu-young;Woo, Byeong-hun;Koo, Nam-kyoung;Jang, Kyung-sik;Lee, Kang-whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1506-1514
    • /
    • 2015
  • In this paper, we proposed a forest fires prediction and detection system. It could provide a situation of fire prediction and detection methods using context awareness sensor. A fire occurs wide range of sensing a fire in a single camera sensor, it is difficult to detect the occurrence of a fire. In this paper, we propose an algorithm for real-time by using a temperature sensor, humidity, Co2, the flame presence information acquired and comparing the data based on multiple conditions, analyze and determine the weighting according to fire in complex situations. In addition, it is possible to differential management of intensive fire detection and prediction for required dividing the state of fire zone. Therefore we propose an algorithm to determine the prediction and detection from the fire parameters as an temperature, humidity, Co2 and the flame in real-time by using a context awareness sensor and also suggest algorithm that provide the path of fire diffusion and service the secure safety zone prediction.

Fuzzy Inference System Architecture for Customer Satisfaction Service (고객 만족 서비스를 위한 퍼지 추론 시스템 구조)

  • Kwon, Hee-Chul;Yoo, Jung-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.219-226
    • /
    • 2010
  • Recently most parking control systems provide customers with various services, but most of the services are just the extension of parking spaces, automatic parking control system and so on. It is essential to use the satisfaction degree as the extent that customer are satisfied with parking control system to improve the quality of the system services and diversify the system services. The degree of satisfaction is different from customer to customer in same condition and can be represented as linguistic variables. In this paper, we present therefore a technique that quantify how much customer are satisfied with parking control system and fuzzy inference system architecture as a solution that can help us to make a efficient decision for these parking problems. In this architecture, inference engine using fuzzy logic compares context data with the rules in the fuzzy rule-based system, gets the sub-results, aggregates them and defuzzifies the aggregated result using MATLAB application programming to obtain crisp value. Fuzzy inference system architecture presented in this paper, can be used as a efficient method to analyze the satisfaction degree which is represented as fuzzy linguistic variables by human emotion. And it can be used to improve the satisfaction degree of not only parking system but also other service systems of various domains.

An improvement of the learning speed through Improved Reinforcement Learning on Jul-Gonu Game (개선된 강화학습을 이용한 줄고누게임의 학습속도개선)

  • Shin, Yong-Woo;Chung, Tae-Choong
    • Journal of Internet Computing and Services
    • /
    • v.10 no.3
    • /
    • pp.9-15
    • /
    • 2009
  • It takes quite amount of time to study a board game because there are many game characters and different stages are exist for board games. Also, the opponent is not just a single character that means it is not one on one game, but group vs. group. That is why strategy is needed, and therefore applying optimum learning is a must. This paper used reinforcement learning algorithm for board characters to learn, and so they can move intelligently. If there were equal result that both are considered to be best ones during the course of learning stage, Heuristic which utilizes learning of problem area of Jul-Gonu was used to improve the speed of learning. To compare a normal character to an improved one, a board game was created, and then they fought against each other. As a result, improved character's ability was far more improved on learning speed.

  • PDF

Strategies Building Knowledge_Base to Respond Effectively to Advanced Cyber Threats (고도화된 사이버 위협에 효과적으로 대응하기 위한 Knowledge_Base 구축전략)

  • Lee, Tae-Young;Park, Dong-Gue
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.8
    • /
    • pp.357-368
    • /
    • 2013
  • Our society has evolved into a fully connected society in a mixed reality environment enabling various knowledge sharing / management / control / creation due to the expansion of broadband ICT infrastructure, smart devices, cloud services and social media services. Therefore cyber threats have increased with the convenience. The society of the future can cause more complex and subtle problems, if you do not have an effective response to cyber threats, due to fusion of logical space and physical space, organic connection of the smart object and the universalization of fully connected society. In this paper, we propose the strategy to build knowledge-base as the basis to actively respond to new cyber threats caused by future various environmental changes and the universalization of fully connected society.

End to End Model and Delay Performance for V2X in 5G (5G에서 V2X를 위한 End to End 모델 및 지연 성능 평가)

  • Bae, Kyoung Yul;Lee, Hong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.107-118
    • /
    • 2016
  • The advent of 5G mobile communications, which is expected in 2020, will provide many services such as Internet of Things (IoT) and vehicle-to-infra/vehicle/nomadic (V2X) communication. There are many requirements to realizing these services: reduced latency, high data rate and reliability, and real-time service. In particular, a high level of reliability and delay sensitivity with an increased data rate are very important for M2M, IoT, and Factory 4.0. Around the world, 5G standardization organizations have considered these services and grouped them to finally derive the technical requirements and service scenarios. The first scenario is broadcast services that use a high data rate for multiple cases of sporting events or emergencies. The second scenario is as support for e-Health, car reliability, etc.; the third scenario is related to VR games with delay sensitivity and real-time techniques. Recently, these groups have been forming agreements on the requirements for such scenarios and the target level. Various techniques are being studied to satisfy such requirements and are being discussed in the context of software-defined networking (SDN) as the next-generation network architecture. SDN is being used to standardize ONF and basically refers to a structure that separates signals for the control plane from the packets for the data plane. One of the best examples for low latency and high reliability is an intelligent traffic system (ITS) using V2X. Because a car passes a small cell of the 5G network very rapidly, the messages to be delivered in the event of an emergency have to be transported in a very short time. This is a typical example requiring high delay sensitivity. 5G has to support a high reliability and delay sensitivity requirements for V2X in the field of traffic control. For these reasons, V2X is a major application of critical delay. V2X (vehicle-to-infra/vehicle/nomadic) represents all types of communication methods applicable to road and vehicles. It refers to a connected or networked vehicle. V2X can be divided into three kinds of communications. First is the communication between a vehicle and infrastructure (vehicle-to-infrastructure; V2I). Second is the communication between a vehicle and another vehicle (vehicle-to-vehicle; V2V). Third is the communication between a vehicle and mobile equipment (vehicle-to-nomadic devices; V2N). This will be added in the future in various fields. Because the SDN structure is under consideration as the next-generation network architecture, the SDN architecture is significant. However, the centralized architecture of SDN can be considered as an unfavorable structure for delay-sensitive services because a centralized architecture is needed to communicate with many nodes and provide processing power. Therefore, in the case of emergency V2X communications, delay-related control functions require a tree supporting structure. For such a scenario, the architecture of the network processing the vehicle information is a major variable affecting delay. Because it is difficult to meet the desired level of delay sensitivity with a typical fully centralized SDN structure, research on the optimal size of an SDN for processing information is needed. This study examined the SDN architecture considering the V2X emergency delay requirements of a 5G network in the worst-case scenario and performed a system-level simulation on the speed of the car, radius, and cell tier to derive a range of cells for information transfer in SDN network. In the simulation, because 5G provides a sufficiently high data rate, the information for neighboring vehicle support to the car was assumed to be without errors. Furthermore, the 5G small cell was assumed to have a cell radius of 50-100 m, and the maximum speed of the vehicle was considered to be 30-200 km/h in order to examine the network architecture to minimize the delay.

A Study on Automatic Classification Model of Documents Based on Korean Standard Industrial Classification (한국표준산업분류를 기준으로 한 문서의 자동 분류 모델에 관한 연구)

  • Lee, Jae-Seong;Jun, Seung-Pyo;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.221-241
    • /
    • 2018
  • As we enter the knowledge society, the importance of information as a new form of capital is being emphasized. The importance of information classification is also increasing for efficient management of digital information produced exponentially. In this study, we tried to automatically classify and provide tailored information that can help companies decide to make technology commercialization. Therefore, we propose a method to classify information based on Korea Standard Industry Classification (KSIC), which indicates the business characteristics of enterprises. The classification of information or documents has been largely based on machine learning, but there is not enough training data categorized on the basis of KSIC. Therefore, this study applied the method of calculating similarity between documents. Specifically, a method and a model for presenting the most appropriate KSIC code are proposed by collecting explanatory texts of each code of KSIC and calculating the similarity with the classification object document using the vector space model. The IPC data were collected and classified by KSIC. And then verified the methodology by comparing it with the KSIC-IPC concordance table provided by the Korean Intellectual Property Office. As a result of the verification, the highest agreement was obtained when the LT method, which is a kind of TF-IDF calculation formula, was applied. At this time, the degree of match of the first rank matching KSIC was 53% and the cumulative match of the fifth ranking was 76%. Through this, it can be confirmed that KSIC classification of technology, industry, and market information that SMEs need more quantitatively and objectively is possible. In addition, it is considered that the methods and results provided in this study can be used as a basic data to help the qualitative judgment of experts in creating a linkage table between heterogeneous classification systems.

Development of the Efficient DAML+OIL Document Management System to support the DAML-S Services in the Embedded Systems (내장형 시스템에서 DAML-S서비스 지원을 위한 효율적인 DAML+OIL문서 관리 시스템)

  • Kim Hag Soo;Jung Moon-young;Cha Hyun Seok;Son Jin Hyun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.1
    • /
    • pp.36-49
    • /
    • 2005
  • Recently, many researchers have given high attention to the semantic web services based on the semantic web technology While existing web services use the XML-based web service description language, WSDL, semantic web services are utilizing web service description languages such as DAML-S in ontology languages. The researchers of semantic web services are generally focused on web service discovery, web service invocation, web service selection and composition, and web service execution monitoring. Especially, the semantic web service discovery as the basis to accomplish the ultimate semantic web service environment has some different properties from previous information discovery areas. Hence, it is necessary to develop the storage system and discovery mechanism appropriate to the semantic well description languages. Even though some related systems have been developed, they are not appropriate for the embedded system environment, such as intelligent robotics, in which there are some limitations on memory disk space, and computing power In this regard, we in the embedded system environment have developed the document management system which efficiently manages the web service documents described by DAML-S for the purpose of the semantic web service discovery, In addition, we address the distinguishing characteristics of the system developed in this paper, compared with the related researches.