• 제목/요약/키워드: 지능형 서비스

검색결과 1,380건 처리시간 0.029초

주관적 웰빙 상태 측정을 위한 비정형 데이터의 상황기반 긍부정성 분석 방법 (Analyzing Contextual Polarity of Unstructured Data for Measuring Subjective Well-Being)

  • 최석재;송영은;권오병
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.83-105
    • /
    • 2016
  • 의료IT 서비스의 유망 분야인 정신건강 증진을 위한 주관적 웰빙 서비스(subjective well-being service) 구현의 핵심은 개인의 주관적 웰빙 상태를 정확하고 무구속적이며 비용 효율적으로 측정하는 것인데 이를 위해 보편적으로 사용되는 설문지에 의한 자기보고나 신체부착형 센서 기반의 측정 방법론은 정확성은 뛰어나나 비용효율성과 무구속성에 취약하다. 비용효율성과 무구속성을 보강하기 위한 온라인 텍스트 기반의 측정 방법은 사전에 준비된 감정어 어휘만을 사용함으로써 상황에 따라 감정어로 볼 수 있는 이른바 상황적 긍부정성(contextual polarity)을 고려하지 못하여 측정 정확도가 낮다. 한편 기존의 상황적 긍부정성을 활용한 감성분석으로는 주관적 웰빙 상태인 맥락에서의 감성분석을 할 수 있는 감정어휘사전이나 온톨로지가 구축되어 있지 않다. 더구나 온톨로지 구축도 매우 노력이 소요되는 작업이다. 따라서 본 연구의 목적은 온라인상에 사용자의 의견이 표출된 비정형 텍스트로부터 주관적 웰빙과 관련한 상황감정어를 추출하고, 이를 근거로 상황적 긍부정성 파악의 정확도를 개선하는 방법을 제안하는 것이다. 기본 절차는 다음과 같다. 먼저 일반 감정어휘사전을 준비한다. 본 연구에서는 가장 대표적인 디지털 감정어휘사전인 SentiWordNet을 사용하였다. 둘째, 정신건강지수를 동적으로 추정하는데 필요한 비정형 자료인 Corpora를 온라인 서베이로 확보하였다. 셋째, Corpora로부터 세 가지 종류의 자원을 확보하였다. 넷째, 자원을 입력변수로 하고 특정 정신건강 상태의 지수값을 종속변수로 하는 추론 모형을 구축하고 추론 규칙을 추출하였다. 마지막으로, 추론 규칙으로 정신건강 상태를 추론하였다. 본 연구는 감정을 분석함에 있어, 기존의 연구들과 달리 상황적 감정어를 적용하여 특정 도메인에 따라 다양한 감정 어휘를 파악할 수 있다는 점에서 독창성이 있다.

TV Anytime 및 MPEG-21 DIA 기반 콘텐츠 이동성을 이용한 디지털 홈 환경에서의 유비쿼터스 TV 콘텐츠 소비 (TV Anytime and MPEG-21 DIA based Ubiquitous Consumption of TV Contents in Digital Home Environment)

  • 김문조;양찬석;임정연;김문철;박성진;김관래;오윤제
    • 방송공학회논문지
    • /
    • 제10권4호통권29호
    • /
    • pp.557-575
    • /
    • 2005
  • 다양한 정보기기를 통해 사용자가 원하는 비디오 콘텐츠를 원하는 형태로 언제 어디서나 소비 할 수 있는 유비쿼터스 비디오 서비스를 위한 핵심 요소 기술이 많이 연구되고 있다. 본 논문에서는 디지털 흠 환경에서 TV 단말 및 다양한 사용자 단말을 이용하여 사용자 선호도 기반 유비쿼터스(Ubiquitous) TV 프로그램 콘텐츠를 소비 할 수 있는 시스템 아키텍쳐(Architecture)를 설계하고 이를 구현한 결과를 제시한다. 그리고 댁내 TV 시청자는 자신이 원하는 TV 프로그램 콘텐츠를 원하는 시간에 선택, 소비할 수 있는 유비쿼터스 서비스를 위한 민간 표준인 TV Anytime 규격과 범용적 멀티미디어 접근 및 소비(UMAC: Universal Multimedia Access and Consumption)을 위해 사용자 환경, 사용자 단말 특성, 사용자 특성에 대한 컨텍스트(Context) 정보를 메타데이터로 서술하는 국제표준인 MPEG-21 DIA(Digital Item Adaptation)을 이용한다. 제안된 유비쿼터스 콘텐츠 이동성 프로토타입(Prototype) 시스템은 사용자가 선호하는 콘텐츠를 어떠한 다양한 사용자 단말을 통해서도 소비가 가능하며, 사용자가 소비하던 콘텐츠를 서로 다른 단말을 통해 이동하여 연속적으로 소비 할 수 있도록 설계되었으며, 함께 시청중인 TV 프로그램 콘텐츠에 대해 단일 사용자뿐 만 아니라, 다중 사용자가 서로 다른 시간에도 콘텐츠 소비가 가능하도록 콘텐츠 이동성 기능도 구현되었다. 본 논문에서 제안하는 디지털 홈 환경에서의 유비쿼터스 TV 프로그램 콘텐츠 소비를 위한 유비쿼터스 콘텐츠 이동성 프로토타입 시스템은 흠 서버, 디스플레이 단말, 지능형 정보 단말로 구성되어 있다 본 프로토타입 시스템을 시험하기 위해 8개 장르의 서로 다른 4개의 공중파 방송 채널에서 방영된 42개 TV 프로그램 콘텐츠가 사용되었다.

실시간 신호제어를 위한 신경망 적용 지체최소화 주기길이 설계모형 개발 (Development of Neural Network Based Cycle Length Design Model Minimizing Delay for Traffic Responsive Control)

  • 이정윤;김진태;장명순
    • 대한교통학회지
    • /
    • 제22권3호
    • /
    • pp.145-157
    • /
    • 2004
  • 국내 실시간 신호제어시스템은 주요교차로의 검지체계에서 산출되는 포화도 정보 및 실시간 신호운영자료를 토대로 차기 주기길이를 설계하고 있다. 이러한 국내 실시간 신호제어시스템의 주기길이 설계모형에 의해 설계되는 차기주기길이는 교통량이 증가하면 주기길이도 증가한다는 주기길이 결정 기본원리를 따르고 있으나 해당 주기길이 설계모형으로 결정되는 주기길이가 과연 지체최소화 주기인지 검토가 요구된다. 또한 국내 실시간 신호제어시스템의 주기길이 설계모형에는 운영자 결정 변수가 있어 차기 주기길이 설계가 비효율적일 수 있으므로 운영자 결정 변수를 제외한 주기길이 설계모형 개발이 필요하다. 이에 본 연구에서는 (1)국내 실시간 신호제어시스템의 주기길이 설계모형을 검토하고, (2)운영자 결정변수를 제외한 주기길이 설계모형을 개발한다. 국내 실시간신호제어시스템의 주기길이 설계모형을 검토한 결과 (1)교차로의 운영상태가 비포화일 경우 지체최소화 주기보다 큰 주기길이를 설계하는 것으로 검토되었고, (2)교차로의 현재 신호주기가 90초 이상일 경우 목적 운영포화도(Target operational volume-to-capacity ratio)가 0.90을 유지하는 반면 신호주기가 90초 미만일 경우 목적운영포화도가 0.90보다 작아지는 것으로 검토되었다. 본 연구는 이러한 점을 고려, 신경망을 이용하여 운영자 결정변수를 제외한 국내 실시간 신호제어시스템을 위한 지체 최소화 주기길이 설계 모형을 개발하였다. 모형 검증결과 본 연구에서 개발된 신경망 모형은 국내 실시간 신호 제어시스템과는 달리 지체최소화 주기길이와 유사한 패턴으로 주기길이를 설계한다는 결과를 도출하였다.택배서비스시장도 성장한 것으로 나타났다. 특히 정부주도에 의한 정보화추진이 전자상거래를 촉진시켜 택배서비스시장에 영향을 미친 것으로 분석되었다.수 있는 Load Balancing System을 제안한다.할 때 가장 효과적인 라우팅 프로토콜이라고 할 수 있다.iRNA 상의 의존관계를 분석할 수 있었다.수안보 등 지역에서 나타난다 이러한 이상대 주변에는 대개 온천이 발달되어 있었거나 새로 개발되어 있는 곳이다. 온천에 이용하고 있는 시추공의 자료는 배제하였으나 온천이응으로 직접적으로 영향을 받지 않은 시추공의 자료는 사용하였다 이러한 온천 주변 지역이라 하더라도 실제는 온천의 pumping 으로 인한 대류현상으로 주변 일대의 온도를 올려놓았기 때문에 비교적 높은 지열류량 값을 보인다. 한편 한반도 남동부 일대는 이번 추가된 자료에 의해 새로운 지열류량 분포 변화가 나타났다 강원 북부 오색온천지역 부근에서 높은 지열류량 분포를 보이며 또한 우리나라 대단층 중의 하나인 양산단층과 같은 방향으로 발달한 밀양단층, 모량단층, 동래단층 등 주변부로 NNE-SSW 방향의 지열류량 이상대가 발달한다. 이것으로 볼 때 지열류량은 지질구조와 무관하지 않음을 파악할 수 있다. 특히 이러한 단층대 주변은 지열수의 순환이 깊은 심도까지 가능하므로 이러한 대류현상으로 지표부근까지 높은 지온 전달이 되어 나타나는 것으로 판단된다.의 안정된 방사성표지효율을 보였다. $^{99m}Tc$-transferrin을 이용한 감염영상을 성공적으로 얻을 수 있었으며, $^{67}Ga$-citrate 영상과 비교하여 더 빠른 시간 안에 우수한 영상을 얻을 수

SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용 (VKOSPI Forecasting and Option Trading Application Using SVM)

  • 라윤선;최흥식;김선웅
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.177-192
    • /
    • 2016
  • 기계학습(Machine Learning)은 인공 지능의 한 분야로, 데이터를 이용하여 기계를 학습시켜 기계 스스로가 데이터 분석 및 예측을 하게 만드는 것과 관련한 컴퓨터 과학의 한 영역을 일컫는다. 그중에서 SVM(Support Vector Machines)은 주로 분류와 회귀 분석을 목적으로 사용되는 모델이다. 어느 두 집단에 속한 데이터들에 대한 정보를 얻었을 때, SVM 모델은 주어진 데이터 집합을 바탕으로 하여 새로운 데이터가 어느 집단에 속할지를 판단해준다. 최근 들어서 많은 금융전문가는 기계학습과 막대한 데이터가 존재하는 금융 분야와의 접목 가능성을 보며 기계학습에 집중하고 있다. 그러면서 각 금융사는 고도화된 알고리즘과 빅데이터를 통해 여러 금융업무 수행이 가능한 로봇(Robot)과 투자전문가(Advisor)의 합성어인 로보어드바이저(Robo-Advisor) 서비스를 발 빠르게 제공하기 시작했다. 따라서 현재의 금융 동향을 고려하여 본 연구에서는 기계학습 방법의 하나인 SVM을 활용하여 매매성과를 올리는 방법에 대해 제안하고자 한다. SVM을 통한 예측대상은 한국형 변동성지수인 VKOSPI이다. VKOSPI는 금융파생상품의 한 종류인 옵션의 가격에 영향을 미친다. VKOSPI는 흔히 말하는 변동성과 같고 VKOSPI 값은 옵션의 종류와 관계없이 옵션 가격과 정비례하는 특성이 있다. 그러므로 VKOSPI의 정확한 예측은 옵션 매매에서의 수익을 낼 수 있는 중요한 요소 중 하나이다. 지금까지 기계학습을 기반으로 한 VKOSPI의 예측을 다룬 연구는 없었다. 본 연구에서는 SVM을 통해 일 중의 VKOSPI를 예측하였고, 예측 내용을 바탕으로 옵션 매매에 대한 적용 가능 여부를 실험하였으며 실제로 향상된 매매 성과가 나타남을 증명하였다.

A Study on Intelligent Skin Image Identification From Social media big data

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권9호
    • /
    • pp.191-203
    • /
    • 2022
  • 화장품 및 뷰티산업에서 고객 맞춤형 제품과 서비스를 제공하는 것은 주요 기술 트렌드이고, 피부상태 진단과 관리는 중요한 필수기능이다. 고객의 요구 수준은 더욱더 높아지고 있으며 이에 대한 다양하고 섬세한 고민과 요구 사항이 소셜미디어 커뮤니티에서 활발하게 다루어지고 있다. 소셜미디어 상의 이미지는 매우 다양하고 비정형적이므로 피부상태 진단 및 관리에 필요한 체계적인 피부 이미지 식별을 위한 시스템이 필요하다. 본 논문에서는 소셜미디어 인스타그램에서 수집한 빅데이터로부터 피부 이미지 데이터를 지능적으로 식별하고, 피부상태 진단 및 관리를 위한 정형화된 피부 샘플 데이터를 추출하는 시스템을 개발하였다. 본 논문에서 제안한 시스템은 빅데이터수집분석단계, 피부이미지분석단계, 훈련데이터준비단계, 인공신경망훈련단계, 피부이미지식별단계로 구성된다. 빅데이터수집분석단계에서는 인스타그램으로부터 빅데이터를 수집하고 피부 상태 진단 및 관리를 위한 이미지 정보를 분석결과로 저장한다. 피부이미지분석단계에서는 전통적인 이미지 처리 기법을 사용하여 피부 이미지의 평가 및 분석 결과를 획득한다. 훈련데이터준비단계에서는 피부이미지 분석결과로부터 피부 샘플데이터를 추출하여 훈련데이터를 준비하였다. 그리고 인공신경망훈련단계에서는 이 훈련데이터를 사용하여 지능적으로 피부 이미지 유형을 예측하는 인공신경망 AnnSampleSkin을 단계별 고도화와 훈련을 통해 모델을 완성하였다. 피부이미지식별단계에서는 소셜미디어로부터 수집된 이미지에 대해 피부샘플을 추출하고, 훈련된 인공신경망 AnnSampleSkin의 이미지 유형 예측 결과들을 통합하여 최종 피부 이미지 유형을 지능적으로 식별한다. 본 논문에서 제안된 피부이미지식별 방법은 약 92% 이상의 높은 피부 이미지 식별 정확도를 나타내고 있고, 정형화된 피부 샘플 이미지 빅데이터를 제공할 수 있게 되었다. 추출된 피부샘플 세트는 피부 상태를 진단하고 관리하는데 매우 효율적이고 유용한 정형화된 피부 이미지 데이터로 사용될 것으로 기대된다.

Emoticon by Emotions: 소비자 감성 기반 이모티콘 추천 시스템 개발 (Emoticon by Emotions: The Development of an Emoticon Recommendation System Based on Consumer Emotions)

  • 김건우;박도형
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.227-252
    • /
    • 2018
  • 인터넷의 발달을 통해 지속적으로 인스턴트 커뮤니케이션이 발달해왔다. 인스턴트 커뮤니케이션에서 가장 대표적인 것이 메신저 애플리케이션이다. 메신저 애플리케이션에서 이모티콘은 송신자의 감정 전달을 보완하기 위해 활용됐다. 메신저 애플리케이션 송신자의 감정 전달에 약한 모습을 보이는데 그 이유는 면대면 커뮤니케이션이 아니기 때문이다. 이모티콘은 과거 화자의 기분 상태를 나타내는 기호로만 사용됐다. 그러나 현재는 이모티콘은 감정 전달 뿐만 아니라 개인의 특성과 개성을 나타내고 싶어 하는 소비자의 심리를 반영하는 형태로 발전해가고 있다. 이모티콘의 사용 환경이 개선되었고, 이모티콘 자체가 발전함으로써 이모티콘 자체에 대한 관심도는 증가하였다. 대표적인 예로 카카오톡, 라인, 애플 등에서 서비스를 진행하고 있으며, 관련 컨텐츠 상품의 매출도 지속적으로 증가할 것으로 전망하고 있다. 이모티콘 자체의 관심도 증가와 관련 사업의 성장세에도 불구하고 현재 적절한 이모티콘 추천 시스템이 부재하다. 국내 점유율 90% 이상의 메신저 애플리케이션인 카카오톡조차 단순히 인기 순이나 최근 순, 혹은 간략한 카테고리 별로 분류한 정도이다. 소비자들은 원하는 이모티콘을 찾기 위해서 스크롤을 계속해서 내려야 하는 불편함이 있으며, 본인이 원하는 감성의 이모티콘을 찾기 어렵다. 소비자들이 편의성 향상과 기업의 이모티콘 관련 사업의 판매 매출 증가를 위해 소비자가 원하는 이모티콘을 추천해줄 수 있는 이모티콘 추천 시스템이 필요하다. 적절한 이모티콘을 추천하기 위해서 소비자가 이모티콘을 보고 느낀 감성에 대해 정량화할 필요성이 있다. 정량화를 통해 소비자가 원하는 이모티콘 셋이 가진 특징과 감성에 대해 분석할 수 있으며, 분석 결과를 토대로 소비자에게 이모티콘을 추천할 수 있다. 이모티콘은 메타데이터화의 방법으로 정량화가 가능하다. 메타데이터화 방법은 빅데이터 시대에 비정형, 반정형 데이터에 대해서 의미를 추출하기 위해 데이터를 구조화 혹은 조직화하는 작업이다. 비정형 데이터인 이모티콘을 메타데이터화를 통해 구조화한다면, 쉽게 소비자가 원하는 감성 형태로 분류할 수 있을 것으로 생각한다. 정확한 감성을 추출하기 위해 감정과 관련된 선행 연구를 통해 7개의 공통 감성 형용사와 한국어에서만 나타나는 은유 혹은 표현적 특징들을 반영하기 위해 하위 세부 표현들까지 고려했다. 이모티콘의 가장 큰 특징인 캐릭터를 기반으로 "표상", "형상", "색상"의 범주에서 세부 하위 감성들을 수집했다. 정확도 높은 추천 시스템을 설계하기 위해 감성 지표만이 아니라 객관적 지표도 고려하였다. 메타데이터화 방법을 통해 이모티콘이 갖고 있는 캐릭터의 특징을 객관적 지표로 14개, 감성 지표로 활용하기 위해 감성 형용사를 36개를 추출하였다. 추출된 감성 형용사는 대비되는 형용사로 구성하여 총 18개로 줄였으며, 18개의 감성 형용사는 카카오톡의 이모티콘을 인기 순으로 임의의 40개 셋을 대상으로 측정하였다. 측정을 위해 이모티콘을 평가할 조사 대상자 온라인으로 모집하였고, 277명의 20~30대의 이모티콘을 구매한 경험이 있는 소비자를 대상으로 설문을 진행하였다. 설문응답자에게 서로 다른 5개의 이모티콘 셋을 평가하도록 하였다. 평가 결과 수집된 18개의 감정 형용사는 요인분석을 통해 감성 지표 요인으로 추출하였다. 추출된 소비자 감성 지표의 요인은 "코믹", "부드러움", "모던함", "투명함"이었다. 이모티콘의 객관적 지표와 감성 지표 요인을 활용하여 소비자 만족과의 관계를 분석하였고, 객관적 지표와 감성 지표 간의 관계도 분석하였다. 이 과정에서 객관적 지표가 소비자 태도에 바로 영향을 주는 것이 아니라 감성 지표 요인을 통해 소비자 태도에 영향을 주는 매개 효과가 있음을 확인하였다. 분석 결과는 소비자의 감성 평가 메커니즘을 밝혀냈고, 소비자의 이모티콘 감성 평가 메커니즘은 객관적 지표가 감성 지표 요인에 영향을 미치며, 감성 지표 요인은 소비자 만족에 영향을 미치는 관계였다. 따라서 감성 지표 요인의 네 가지만으로 이모티콘 추천 시스템을 설계하였고, 추천 방법은 각 감성과의 거리를 유클리디안 거리로 측정하여 거리의 차가 0에 가까울수록 비슷한 감성으로 정의하였다. 본 연구에서 제안한 이모티콘 시스템의 검증을 위해 각 감성 지표 요인과 소비자 만족의 평균을 지표 값으로 활용하여 각 이모티콘 셋의 감성 패턴을 그래프로 비교하였고, 추천된 이모티콘들과 선택된 이모티콘이 대체로 비슷한 패턴을 그리는 것을 확인하였다. 정확한 검증을 위해 사전 조사하였던 소비자를 대상으로 이모티콘 추천 시스템이 제시한 결과와 유사하게 평가하였는지 유사 순위를 세 구간으로 나누어 비교하였고, 순위별 예측 정확도는 결과 1순위 81.02%, 2순위 76.64%, 3순위 81.63%였다. 본 연구의 결과는 학문적, 실무적으로 다양한 분야에서 활용 가능한 방법론을 제시하였으며, 기존에 없던 이모티콘 추천 시스템의 설계를 통해 소비자에게는 편의와 이모티콘을 서비스하는 기업에는 매출증대의 효과를 가져올 것으로 예상한다. 그리고 본 연구를 통해 지능형 이모티콘 시스템으로 발전할 수 있는 단초를 제공했다는 점에서 의미가 있다. 본 연구에서 제안한 감성 요인들을 활용하여 감성 라이브러리로 사용함으로써, 새로운 이모티콘 출시 시 감성 평가의 지표로 활용할 수 있다. 축적된 감성 라이브러리와 기업의 판매 데이터, 매출 정보, 소비자 데이터를 결합하여 본 연구에서 제안한 추천 시스템을 복합형 추천 시스템으로 발전시켜 단순 소비자의 편의성이나 매출 증가뿐만 아니라 기업에서 전략적으로 활용 가능한 지적 자산으로 활용할 수 있을 것으로 판단한다.

온톨로지와 토픽모델링 기반 다차원 연계 지식맵 서비스 연구 (A Study on Ontology and Topic Modeling-based Multi-dimensional Knowledge Map Services)

  • 정한조
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.79-92
    • /
    • 2015
  • 미래 핵심 가치 기술 발굴 및 탐색을 위해서는 범국가적인 국가R&D정보와 과학기술정보의 연계 융합이 필요하다. 본 논문에서는 국가R&D정보와 과학기술정보를 온톨로지와 토픽모델링을 사용하여 연계 융합하여 지식베이스를 구축한 방법론을 소개하고, 이를 기반으로 한 다차원 연계 지식맵 서비스를 소개한다. 국가R&D정보는 국가R&D과제와 참여인력, 해당 과제에 대한 성과 정보, 논문, 특허, 연구보고서 정보들을 포함한다. 과학기술정보는 논문, 특허, 동향 등의 과학기술연구에 대한 기술 문서를 일컫는다. 본 논문에서는 지식베이스에서의 지식 처리 및 관리의 효율성을 높이기 위해 Lightweight 온톨로지를 사용한다. Lightweight 온톨로지는 국가R&D과제 참여자와 성과정보, 과학기술정보를 과제-성과 관계, 문서-저자 관계, 저자-소속기관 관계 등의 단순한 연관관계를 이용하여 국가R&D정보와 과학기술정보를 융합한다. 이러한 단순한 연관관계만을 이용함으로써 지식 처리의 효율성을 높이고 온톨로지 구축 과정을 자동화한다. 보다 구체적인 Concept 레벨에서의 온톨로지 구축을 위해 토픽모델링을 활용한다. 토픽모델링을 활용하여 국가R&D정보와 과학기술정보 문서들의 토픽 주제어를 추출하고 각 문서 간 연관관계를 추출한다. 일반적인 Concept 레벨에서의 Fully-Specified 온톨로지를 구축하기 위해서는 거의 100% 수동으로 해야 하기 때문에, 많은 시간과 비용이 소모된다. 본 연구에서는 이러한 수동적인 온톨로지 구축이 아닌 자동화된 온톨로지 구축을 위해 토픽모델링을 활용한다. 토픽모델링을 활용하여 온톨로지 구축에 필요한 문서와 토픽 키워드 간의 관계, 문서 간 의미 상 연관관계를 자동으로 추출한다. 마지막으로, 이와 같이 구축된 지식베이스의 트리플(Triple) 정보를 활용하여, 연구자들의 공동저자관계, 문서간의 공통주제어관계 등을 연구자, 주제어, 기관, 저널 등의 다차원 연관관계를 방사형 네트워크 형식을 이용하여 시각화한 지식맵 서비스들을 소개한다.

버스정보시스템(BIS) 수집자료를 이용한 경로통행시간 추정 (A Study on Estimating Route Travel Time Using Collected Data of Bus Information System)

  • 이영우
    • 대한토목학회논문집
    • /
    • 제33권3호
    • /
    • pp.1115-1122
    • /
    • 2013
  • 각종 교통정보에 대한 요구수준이 높아지고 있으며 그 중에서도 도시 교통관리나 이용자 측면에서 통행시간 정보는 매우 유용한 것이다. 정확성 높은 통행시간의 추정을 위해서는 신뢰성 높은 교통데이터의 수집이 필수적으로 요구된다. 버스정보시스템(BIS)은 도시 주요도로를 운행하는 시내버스를 대상으로 통행시간 정보를 실시간으로 수집 관리하고 있어 경로통행시간 추정에 매우 유용한 데이터라 할 수 있다. 그러나 기존 BIS수집데이터는 시내버스의 운행과 관련된 정보를 생성하고 안내하는 기능에만 제한적으로 사용되고 있고 다양한 분야에 활용되지 못하고 있는 실정이다. 따라서 본 연구에서는 BIS를 통해 실시간으로 수집되고 있는 데이터를 이용하여 경로통행시간을 추정하기 위한 연구를 수행하였다. 시내버스의 총 통행시간에서 버스정류장서비스시간을 제외한 통행시간을 설명변수로 경로통행시간 추정모형을 구축한 결과 결정계수($R^2$)가 모두 0.950이상이었으며 T-test를 통한 검정결과 통계적으로 유의한 것으로 분석되었다. 따라서 각 가로별로 BIS를 통해 수집되고 있는 시내버스의 통행시간데이터를 설명변수로 이용하면 실시간 경로통행시간 추정이 가능할 것으로 판단된다.

스마트시티 관련 R&D 테스트베드 사업의 운영관리 방향에 관한 연구 (A Study on the Operation & Management of Smart City R&D Testbed Projects)

  • 한선희;이재용
    • 디지털융복합연구
    • /
    • 제15권7호
    • /
    • pp.13-25
    • /
    • 2017
  • 국내의 경우 부처별로 다양한 기술개발 사업을 추진해왔고 R&D투자확대 정책에 따라 다양한 분야에서 성과를 내고 있으며 최근 기술개발 단계에서 실증단계로 넘어가면서 개발기술 및 서비스를 실증하기 위한 테스트베드사업을 활발하게 추진하고 있다. 하지만 개별부처에서 경쟁적으로 R&D사업을 계획하고 추진하게 됨에 따라 테스트베드사업의 일관되고 체계적인 시스템이 없다는 지적이 제기되고 있다. 가장 문제시 되는 부분이 테스트사업이 완료가 되었어도 이후의 운영 관리가 미흡하여 개발기술뿐만 아니라 테스트베드 자체도 사장된다는 점이다. 이러한 문제를 해결하기 위하여 국가 R&D 테스트베드사업을 할 시 운영관리, 사업화 방안을 마련하는 연구도 동반되어야 하나 현재까지도 개발기술을 검증하는 테스트베드 구축에 중점을 두어 이후의 체계에 대해서는 고려하지 않는 실정이다. 본 연구에서는 기존 스마트시티 관련 국가 R&D 테스트베드 사업의 문제점을 집중 분석하고, 국내외 운영관리 성공사례를 적극 수용하여 국책사업의 성과 극대화, 효율성, 지속성 등을 해결하기 위하여 기본적인 운영관리 방향을 도출하고자 한다.

국가R&D정보활용을 위한 전문용어사전 구축 (Construction of the Terminology Dictionary for National R&D Information Utilization)

  • 김태현;양명석;최광남
    • 한국콘텐츠학회논문지
    • /
    • 제19권10호
    • /
    • pp.217-225
    • /
    • 2019
  • 국가연구개발(R&D, Research and Development) 정보는 정부부처로부터 발주되는 사업 과제를 수행하는 과정에서 발생되는 다양한 연구분야의 정보들이 포함되어 있다. 따라서 효율적인 R&D정보 검색을 위해서는 이러한 국가R&D정보의 특성을 반영할 수 있는 국가R&D 전문용어사전 구축이 필요하다. 본 연구에서는 국가R&D정보에서 연구분야를 명시하기 위해 활용되는 국가과학기술표준분류를 적용하여 국가R&D용어사전을 구축하기 위한 방안을 제안한다. 국가R&D 과제정보의 구조적 특성과 그에 따른 과제 키워드의 유용성에 대해 언급하고, 국가과학기술표준분류별 국가R&D정보 현황과 국가R&D 용어의 특성에 대해 살펴보고자 한다. 그리고 이를 바탕으로 국가R&D용어사전을 구축하기 위한 방법을 용어사전의 유형과 구조, 사전구축 절차, 정제규칙의 관점에서 정의한다. 본 연구를 기반으로 구축되는 국가R&D용어사전은 국가R&D정보 검색 시 한 영 대역어, 동의어 등을 활용한 검색어 확장과 국가과학기술표준분류를 활용한 검색 범위 명확화, 용어설명 정보를 활용한 이용자 편의기능 제공 등에 다양하게 활용될 수 있다.