• 제목/요약/키워드: 지능형병원정보시스템

검색결과 24건 처리시간 0.017초

오피니언 마이닝을 이용한 지능형 VOC 분석시스템 (Intelligent VOC Analyzing System Using Opinion Mining)

  • 김유신;정승렬
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.113-125
    • /
    • 2013
  • 기업 경영에 있어서 고객의 소리(VOC)는 고객 만족도 향상 및 기업의사결정에 매우 중요한 정보이다. 이는 비단 기업뿐만 아니라 대고객, 대민원 업무를 처리하는 모든 조직에 있어서도 동일하다. 때문에 최근에는 기업뿐만 아니라 공공, 의료, 금융, 교육기관 등 거의 모든 조직이 VOC를 수집하여 활용하고 있다. 이러한 VOC는 방문, 전화, 우편, 인터넷게시판, SNS 등 다양한 채널을 통해 전달되지만, 막상 이를 제대로 활용하기는 쉽지 않다. 왜냐하면, 고객이 매우 감정적인 상태에서 고객의 주관적 의사를 음성 또는 문자로 표출하기 때문에 그 형식이나 내용이 정형화되어 있지 않고 저장하기도 어려우며 또한 저장하더라도 매우 방대한 분량의 비정형 데이터로 남기 때문이다. 본 연구는 이러한 비정형 VOC 데이터를 자동으로 분류하고 VOC의 유형과 극성을 판별할 수 있는 오피니언 마이닝 기반의 지능형 VOC 분석 시스템을 제안하였다. 또한 VOC 오피니언 분석의 기준이 되는 주제지향 감성사전 개발 프로세스와 각 단계를 구체적으로 제시하였다. 그리고 본 연구에서 제시한 시스템의 효용성을 검증하기 위하여 의료기관 홈페이지에서 수집한 4,300여건의 VOC 데이터를 이용하여 병원에 특화된 감성어휘와 감성극성값을 도출하여 감성사전을 구축하고 이를 통해 구현된 VOC분류 모형의 정확도를 비교하는 실험을 수행하였다. 그 결과 "칭찬, 친절함, 감사, 무사히, 잘해, 감동, 미소" 등의 어휘는 매우 높은 긍정 오피니언 값을 가지며, "퉁명, 뭡니까, 말하더군요, 무시하는" 등의 어휘들은 강한 부정의 극성값을 가지고 있음을 확인하였다. 또한 VOC의 오피니언 분류 임계값이 -0.50일 때 가장 높은 분류 예측정확도 77.8%를 검증함으로써 오피니언 마이닝 기반의 지능형 VOC 분석시스템의 유효성을 확인하였다. 그러므로 지능형 VOC 분석시스템을 통해 VOC의 실시간 자동 분류 및 대응 우선순위를 도출하여 고객 민원에 대해 신속히 대응한다면, VOC 전담 인력을 효율적으로 운용하면서도 고객 불만을 초기에 해소할 수 있는 긍정적 효과를 기대해 볼 수 있을 것이다. 또한 VOC 텍스트를 분석하고 활용할 수 있는 오피니언 마이닝 모형이라는 새로운 시도를 통해 향후 다양한 분석과 실용 프레임워크의 기틀을 제공할 수 있을 것으로 기대된다.

일 병원의 환자중심 지능형 병상 지원(Smart Bedside Station) 시스템의 이용현황 및 사용 만족도 (Utilization of and Satisfaction with Smart Bedside Station System as a Patient-centered Healthcare System)

  • 조문숙;박연환
    • 근관절건강학회지
    • /
    • 제24권2호
    • /
    • pp.89-100
    • /
    • 2017
  • Purpose: The aim of this study was to examine the utilization of and satisfaction with the smart bedside station (SBS) system among users in a hospital. Methods: A cross-sectional descriptive design was used. The participants were 190 patients, 186 family caregivers, and 154 nurses in a hospital. Results: Around 78.1% of patients or family caregivers used the SBS system at least once during their hospital stay. The commonly used items on the SBS system menu were "lab findings", "hospital cost", "today's medication", and the "alarm message". Satisfaction with the SBS system of patients and family caregivers were significantly higher than those of nurses (F=39.88, p<.001). Conclusion: A patient-centered SBS system was a useful system that could increase patient satisfaction and comfort. More specific and technical service contents reflecting the current healthcare system should be added.

선호의식 조사를 통한 버스 차내 혼잡도 정보제공이 버스선택에 미치는 영향 분석 (Stated Preference Analysis of the Impacts of Bus Crowdedness Information on Bus Choice)

  • 이백진;김준기;김경석;오성호
    • 대한교통학회지
    • /
    • 제26권6호
    • /
    • pp.61-70
    • /
    • 2008
  • 기존 버스정보 시스템(BIS, Bus Information Systems)에 의해 제공되는 교통정보는 도착예정시간 정보와 같은 실시간 운행정보 위주인 반면 본 연구에서는 이용자들의 다양한 교통정보 수요를 반영하고 대중교통 이용 편의성 향상을 위해 새로운 대중교통정보 제공 서비스인 실시간 버스 차내 혼잡도 정보에 관해 논의한다. 버스 차내 혼잡도 정보제공이 이용자들의 버스선택 행태에 미치는 영향을 분석하기 위해 선호의식 조사를 실시하였으며 버스 선택모형 구축을 위해 대표적 개별행태모형인 이항로짓모형을 적용하였다. 또한 이용자 계층별(연령대별, 통행목적별 등) 정보제공 효과 분석을 위해 계층별 버스 선택모형을 구축하였다. 모형 추정결과 실시간 버스 차내 혼잡정보는 이용자들의 버스선택 행동에 유의한 영향을 미치는 것으로 분석되어 정보제공의 필요성이 있음을 보였다. 버스 차내 혼잡정보가 버스선택에 미치는 영향은 연령대별(청년층, 장년층, 고령층)로 차이가 있었으며 특히 고령자(60대 이상)의 버스선택에 가장 큰 영향이 있는 것으로 분석되었다. 통행목적 별로 분석한 결과 통근?통학과 같은 업무통행에 비하여 비업무통행(여가/친교/개인업무, 쇼핑, 병원)인 경우가 버스차내 혼잡정보에 더 민감하였으며 특히 쇼핑통행인 경우가 가장 높았다.

사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안 (A Proposal of a Keyword Extraction System for Detecting Social Issues)

  • 정다미;김재석;김기남;허종욱;온병원;강미정
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.1-23
    • /
    • 2013
  • 융합 R&D가 추구해야 할 바람직한 방향은 이종 기술 간의 결합에 의한 맹목적인 신기술 창출이 아니라, 당면한 주요 문제를 해결함으로써 사회적 니즈를 충족시킬 수 있는 기술을 개발하는 것이다. 이와 같은 사회문제 해결형 기술 R&D를 촉진하기 위해서는 우선 우리 사회에서 주요 쟁점이 되고 있는 문제들을 선별해야 한다. 그런데 우선적이고 중요한 사회문제를 분별하기 위해 전문가 설문조사나 여론조사 등 기존의 사회과학 방법론을 사용하는 것은 참여자의 선입견이 개입될 수 있고 비용이 많이 소요된다는 한계를 지닌다. 기존의 사회과학 방법론이 지닌 문제점을 보완하기 위하여 본 논문에서는 사회적 이슈를 다루고 있는 대용량의 뉴스기사를 수집하고 통계적인 기법을 통하여 사회문제를 나타내는 키워드를 추출하는 시스템의 개발을 제안한다. 2009년부터 최근까지 3년 동안 10개 주요 언론사에서 생산한 약 백 30만 건의 뉴스기사에서 사회문제를 다루는 기사를 식별하고, 한글 형태소 분석, 확률기반의 토픽 모델링을 통해 사회문제 키워드를 추출한다. 또한 키워드만으로는 정확한 사회문제를 파악하기 쉽지 않기 때문에 사회문제와 연관된 키워드와 문장을 찾아서 연결하는 매칭 알고리즘을 제안하다. 마지막으로 사회문제 키워드 비주얼라이제이션 시스템을 통해 시계열에 따른 사회문제 키워드를 일목요연하게 보여줌으로써 사회문제를 쉽게 파악할 수 있도록 하였다. 특히 본 논문에서는 생성확률모델 기반의 새로운 매칭 알고리즘을 제안한다. 대용량 뉴스기사로부터 Latent Dirichlet Allocation(LDA)와 같은 토픽 모델 방법론을 사용하여 자동으로 토픽 클러스터 세트를 추출할 수 있다. 각 토픽 클러스터는 연관성 있는 단어들과 확률값으로 구성된다. 그리고 도메인 전문가는 토픽 클러스터를 분석하여, 각 토픽 클러스터의 레이블을 결정하게 된다. 이를 테면, 토픽 1 = {(실업, 0.4), (해고, 0.3), (회사, 0.3)}에서 토픽 단어들은 실업문제와 관련있으며, 도메인 전문가는 토픽 1을 실업문제로 레이블링 하게 되고, 이러한 토픽 레이블은 사회문제 키워드로 정의한다. 그러나 이와 같이 자동으로 생성된 사회문제 키워드를 분석하여 현재 우리 사회에서 어떤 문제가 발생하고 있고, 시급히 해결해야 될 문제가 무엇인지를 파악하기란 쉽지 않다. 따라서 제안된 매칭 알고리즘을 사용하여 사회문제 키워드를 요약(summarization)하는 방법론을 제시한다. 우선, 각 뉴스기사를 문단(paragraph) 단위로 세그먼트 하여 뉴스기사 대신에 문단 세트(A set of paragraphs)를 가지게 된다. 매칭 알고리즘은 각 토픽 클러스터에 대한 각 문단의 확률값을 측정하게된다. 이때 토픽 클러스터의 단어들과 확률값을 이용하여 토픽과 문단이 얼마나 연관성이 있는지를 계산하게 된다. 이러한 과정을 통해 각 토픽은 가장 연관성이 있는 문단들을 매칭할 수 있게 된다. 이러한 매칭 프로세스를 통해 사회문제 키워드와 연관된 문단들을 검토함으로써 실제 우리 사회에서 해당 사회문제 키워드와 관련해서 구체적으로 어떤 사건과 이슈가 발생하는 지를 쉽게 파악할 수 있게 된다. 또한 매칭 프로세스와 더불어 사회문제 키워드 가시화를 통해 사회문제 수요를 파악하려는 전문가들은 웹 브라우저를 통해 편리하게 특정 시간에 발생한 사회문제가 무엇이며, 구체적인 내용은 무엇인지를 파악할 수 있으며, 시간 순서에 따른 사회이슈의 변동 추이와 그 원인을 알 수 있게 된다. 개발된 시스템을 통해 최근 3년 동안 국내에서 발생했던 다양한 사회문제들을 파악하였고 개발된 알고리즘에 대한 평가를 수행하였다(본 논문에서 제안한 프로토타입 시스템은 http://dslab.snu.ac.kr/demo.html에서 이용 가능함. 단, 구글크롬, IE8.0 이상 웹 브라우저 사용 권장).