상품 검색시간의 단축과 쇼핑에 투입되는 노력의 감소 등, 온라인 쇼핑이 주는 장점에 대한 긍정적인 인식이 확산되면서 전자상거래(e-commerce)의 중요성이 부각되는 추세이다. 전자상거래 기업들은 고객확보를 위해 다양한 인터넷 고객관계 관리(eCRM) 활동을 전개하고 있는데, 개인화된 추천 서비스의 제공은 그 중 하나이다. 정확한 추천 시스템의 구축은 전자상거래 기업의 성과를 좌우하는 중요한 요소이기 때문에, 추천 서비스의 정확도를 높이기 위한 다양한 알고리즘들이 연구되어 왔다. 특히 협업필터링(collaborative filtering: CF)은 가장 성공적인 추천기법으로 알려져 있다. 그러나 고객이 상품을 구매한 과거의 전자상거래 기록을 바탕으로 미래의 추천을 하기 때문에 많은 단점들이 존재한다. 신규 고객의 경우 유사한 구매 성향을 가진 고객들을 찾기 어렵고 (Cold-Start problem), 상품 수에 비해 구매기록이 부족할 경우 상관관계를 도출할 데이터가 희박하게 되어(Sparsity) 추천성능이 떨어지게 된다. 취향이 독특한 사용자를 뜻하는 'Gray Sheep'에 의한 추천성능의 저하도 그 중 하나이다. 이러한 문제인식을 토대로, 본 연구에서는 소셜 네트워크 분석기법 (Social Network Analysis: SNA)과 협업필터링을 결합하여 데이터셋의 특이 취향 사용자 (Gray Sheep) 문제를 해소하는 방법을 제시한다. 취향이 독특한 고객들의 구매데이터를 소셜 네트워크 분석지표를 활용하여 전체 데이터에서 분리해낸다. 그리고 분리한 데이터와 나머지 데이터인 두 가지 데이터셋에 대하여 각기 다른 유사도 기법과 트레이닝 셋을 적용한다. 이러한 방법을 사용한 추천성능의 향상을 검증하기 위하여 미국 미네소타 대학 GroupLens 연구팀에 의해 수집된 무비렌즈 데이터(http://movielens.org)를 활용하였다. 검증결과, 일반적인 협업필터링 추천시스템에 비하여 이 기법을 활용한 협업필터링의 추천성능이 향상됨을 확인하였다.
최근 온라인의 비약적인 활성화로 캠페인 채널들이 다양하게 확대되면서 과거와는 비교할 수 없을 수준의 다양한 유형들의 캠페인들이 기업에서 수행되고 있다. 하지만, 고객의 입장에서는 중복 노출로 인한 캠페인에 대한 피로감이 커지면서 스팸으로 인식하는 경향이 있고, 기업입장에서도 캠페인에 투자하는 비용은 점점 더 늘어났지만 실제 캠페인 성공률은 오히려 더 낮아지고 있는 등 캠페인 자체의 효용성이 낮아지고 있다는 문제점이 있어 실무적으로 캠페인의 효과를 높이고자 하는 다양한 연구들이 지속되고 있다. 특히 최근에는 기계학습을 이용하여 캠페인의 반응과 관련된 다양한 예측을 해보려는 시도들이 진행되고 있는데, 이 때 캠페인 데이터의 다양한 특징들로 인해 적절한 특징을 선별하는 것은 매우 중요하다. 전통적인 특징 선택 기법으로 탐욕 알고리즘(Greedy Algorithm) 중 SFS(Sequential Forward Selection), SBS(Sequential Backward Selection), SFFS(Sequential Floating Forward Selection) 등이 많이 사용되었지만 최적 특징만을 학습하는 모델을 생성하기 때문에 과적합의 위험이 크고, 특징이 많은 경우 분류 예측 성능 하락 및 학습시간이 많이 소요된다는 한계점이 있다. 이에 본 연구에서는 기존의 캠페인에서의 효과성 제고를 위해 개선된 방식의 특징 선택 알고리즘을 제안한다. 본 연구의 목적은 캠페인 시스템에서 처리해야 하는 데이터의 통계학적 특성을 이용하여 기계 학습 모델 성능 향상의 기반이 되는 특징 부분 집합을 탐색하는 과정에서 기존의 SFFS의 순차방식을 개선하는 것이다. 구체적으로 특징들의 데이터 변형을 통해 성능에 영향을 많이 끼치는 특징들을 먼저 도출하고 부정적인 영향을 미치는 특징들은 제거를 한 후 순차방식을 적용하여 탐색 성능에 대한 효율을 높이고 일반화된 예측이 가능하도록 개선된 알고리즘을 적용하였다. 실제 캠페인 데이터를 이용해 성능을 검증한 결과, 전통적인 탐욕알고리즘은 물론 유전자알고리즘(GA, Genetic Algorithm), RFE(Recursive Feature Elimination) 같은 기존 모형들 보다 제안된 모형이 보다 우수한 탐색 성능과 예측 성능을 보임을 확인할 수 있었다. 또한 제안 특징 선택 알고리즘은 도출된 특징들의 중요도를 제공하여 예측 결과의 분석 및 해석에도 도움을 줄 수 있다. 이를 통해 캠페인 유형별로 중요 특징에 대한 분석과 이해가 가능할 것으로 기대된다.
한국 정부가 UN의 2022년 전자정부 발전 지수에서 UN가입 193개국 중 3위에 랭크됐다. 그동안 꾸준히 상위국으로 평가된 한국은 분명 세계 전자정부의 선도국이라 할 수 있다. 전자정부의 윤활유는 데이터다. 데이터는 그 자체로 정보가 아니고 기록도 아니지만 정보와 기록의 원천이며 지식의 자원이다. 전자적 시스템을 통한 행정 행위가 보편화된 이후 당연히 데이터에 기반한 기록의 생산과 기술이 확대되고 진화하고 있다. 기술은 가치중립적인 듯 보이지만 사실 그 자체로 특정 세계관을 반영하고 있다. 더구나 비물질적 유통을 기반으로 하는 디지털 세계, 온라인 네트워크의 또 다른 아이러니는 반드시 물리적 도구를 통해서만 접속하고 접촉할 수 있다는 점이다. 디지털 정보는 논리적 대상이지만 반드시 어떤 유형이든 그것을 중계할 장치 없이는 디지털 자원을 읽어 내거나 활용할 수 없다. 초연결, 초지능을 무기로 하는 새로운 기술의 디지털 질서는 전통적인 권력 구조에 깊은 영향력을 끼칠 뿐만 아니라 기존의 정보 및 지식 전달 매개체에도 마찬가지의 영향을 미치고 있다. 더구나 데이터에 기반한 생성형 인공지능을 비롯해 새로운 기술과 매개가 단연 화두다. 디지털 기술의 전방위적 성장과 확산이 인간 역능의 증강과 사유의 외주화 상황까지 왔다고 볼 수 있을 것이다. 여기에는 딥 페이크를 비롯한 가짜 이미지, 오토 프로파일링, 사실처럼 생성해 내는 AI 거짓말(hallucination), 기계 학습데이터의 저작권 침해에 이르기까지 다양한 문제점 또한 내포하고 있다. 더구나 급진적 연결 능력은 방대한 데이터의 즉각적 공유를 가능하게 하고 인지 없이 행위를 발생시키는 기술적 무의식에 의존하게 된다. 그런 점에서 지금의 기술 사회의 기계는 단순 보조의 수준을 넘어서고 있으며 기계의 인간 사회 진입은 고도의 기술 발전에 따른 자연적인 변화 양상이라고 하기에는 간단하지 않은 지점이 존재한다. 시간이 지나며 기계에 대한 관점이 변화하게 될 것이기 때문이다. 따라서 중요한 것은 기계를 통한 커뮤니케이션, 행위의 결과로서의 기록이 생산되고 사용되는 방식의 변화가 의미하는 사회문화적 함의에 있다. 아카이브 영역에서도 초지능, 초연결사회를 향한 기술의 변화로 인해 데이터 기반 아카이브 사회는 어떤 문제에 직면하게 될 것인지, 그리고 그 속에서 누가 어떻게 기록과 데이터의 지속적 활동성을 입증하고 매체 변화의 주요 동인이 될 것인가에 대한 연구가 필요한 시점이다. 본 연구는 아카이브가 행위의 결과인 기록뿐만 아니라 데이터를 전략적 자산으로 인식할 필요성에서 시작했다. 이를 통해 전통적 경계를 확장하고 데이터 중심 사회에서 어떻게 재영토화를 이룰 수 있을지를 알아보았다.
최근 교통문제를 해결하기 위한 방법으로 교통계획분야에 GIS나 ITS를 활용한 다양한 연구가 활발히 진행 중에 있다. 이와 함께 정보환경의 급격한 발달과 더불어 대안 경로의 선정, 또는 교통예보 서비스와 같은 온라인 상에서의 교통정보 제공이 이루어지고 있어 GIS 환경 내에서도 가로망의 교통량을 정확하게 예측할 수 있는 기능이 요구되고 있어 통행배정모형의 중요성이 증가하고 있다. 그런데, 전통적인 정적 통행배정모형은 급변하는 교통상황에 적합하지 않기 때문에 실시간 교통상황에 대한 교통흐름을 예측할 수 있는 동적 통행배정모형의 개발이 요구되고 있다. 그러나, 동적 통행배정모형은 시공간적인 변수들의 복잡성으로 인해서 그 최적해를 찾는데 많은 수학적인 어려움과 제약조건이 존재한다. 따라서, 이를 해결하기 위한 여러 가지 해법이 연구되어왔지만, 기존의 방법은 목적함수나 제약조건이 convex(하지 않은 경우에는 적용이 불가능한 단점을 가지고 있다. 본 연구에서는 인공지능방법(Artificial Intelligence Technique)의 한 분야로 활발히 연구되고 있는 유전자 알고리즘(Genetic Algorithm)을 동적 통행배정 모형에 도입하여 그 해결 방법을 제시하였다. 논문에서 사용한 동적 통행배정모형은 제약조건이 convex(하지 않은 Merchant-Nemhauser모형이고, 새로운 해결기법으로 사용된 유전자 알고리즘은 일반적인 제약조건을 처리할 수 있다고 알려진 GENOCOP III시스템이다. 새로 도입된 방법의 효율성과 유의성을 검증하기 위해 간단한 네트워크에 적용하였다. 그 결과 GENOCOP III 시스템이 계산과정의 효율성에 있어서 기존의 비선형 해법 알고리즘보다 우수한 것으로 입증되었다.연구가 진행되어야 할 것이다. 실질적으로 성감별 수정란의 대량생산이 가능할 것으로 사료되며, 농가차원에서 산업적 실용화가 될 수 있을 것으로 기대한다.twork descrition)를 통해 교통분석후의 제반 교통특성(교통량, 교통량/용량 비(比), 속도 등)을 교통망상에 표시할 수 있음으로서 의사결정에 보다 많은 도움을 줄 수 있을 것이다. 비트율의 증가와 화질 열화는 각각 최대 1.32%와 최대 0.11dB로 무시할 수 있을 정도로 작음을 확인 하였다.을 알 수 있었다. 현지관측에 비해 막대한 비용과 시간을 절약할 수 있는 위성영상해석방법을 이용한 방법은 해양수질파악이 가능할 것으로 판단되며, GIS를 이용하여 다양하고 복잡한 자료를 데이터베이스화함으로써 가시화하고, 이를 기초로 공간분석을 실시함으로써 환경요소별 공간분포에 대한 파악을 통해 수치모형실험을 이용한 각종 환경영향의 평가 및 예측을 위한 기초자료로 이용이 가능할 것으로 사료된다.염총량관리 기본계획 시 구축된 모형 매개변수를 바탕으로 분석을 수행하였다. 일차오차분석을 이용하여 수리매개변수와 수질매개변수의 수질항목별 상대적 기여도를 파악해 본 결과, 수리매개변수는 DO, BOD, 유기질소, 유기인 모든 항목에 일정 정도의 상대적 기여도를 가지고 있는 것을 알 수 있었다. 이로부터 수질 모형의 적용 시 수리 매개변수 또한 수질 매개변수의 추정 시와 같이 보다 세심한 주의를 기울여 추정할 필요가 있을 것으로 판단된다.변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을
본 연구는 경향신문, 한겨레, 동아일보 세 개의 신문기사가 가지고 있는 내용 및 논조에 어떠한 차이가 있는지를 객관적인 데이터를 통해 제시하고자 시행되었다. 본 연구는 텍스트 마이닝 기법을 활용하여 신문기사의 키워드 단순빈도 분석과 Clustering, Classification 결과를 분석하여 제시하였으며, 경제, 문화 국제, 사회, 정치 및 사설 분야에서의 신문사 간 차이점을 분석하고자 하였다. 신문기사의 문단을 분석단위로 하여 각 신문사의 특성을 파악하였고, 키워드 네트워크로 키워드들 간의 관계를 시각화하여 신문사별 특성을 객관적으로 볼 수 있도록 제시하였다. 신문기사의 수집은 신문기사 데이터베이스 시스템인 KINDS에서 2008년부터 2012년까지 해당 주제로 주제어 검색을 하여 총 3,026개의 수집을 하였다. 수집된 신문기사들은 불용어 제거와 형태소 분석을 위해 Java로 구현된 Lucene Korean 모듈을 이용하여 자연어 처리를 하였다. 신문기사의 내용 및 논조를 파악하기 위해 경향신문, 한겨레, 동아일보가 정해진 기간 내에 일어난 특정 사건에 대해 언급하는 단어의 빈도 상위 10위를 제시하여 분석하였고, 키워드들 간 코사인 유사도를 분석하여 네트워크 지도를 만들었으며 단어들의 네트워크를 통해 Clustering 결과를 분석하였다. 신문사들마다의 논조를 확인하기 위해 Supervised Learning 기법을 활용하여 각각의 논조에 대해 분류하였으며, 마지막으로는 분류 성능 평가를 위해 정확률과 재현률, F-value를 측정하여 제시하였다. 본 연구를 통해 문화 전반, 경제 전반, 정치분야의 통합진보당 이슈에 대한 신문기사들에 전반적인 내용과 논조에 차이를 보이고 있음을 알 수 있었고, 사회분야의 4대강 사업에 대한 긍정-부정 논조에 차이가 있음을 발견할 수 있었다. 본 연구는 지금까지 연구되어왔던 한글 신문기사의 코딩 및 담화분석 방법에서 벗어나, 텍스트 마이닝 기법을 활용하여 다량의 데이터를 분석하였음에 의미가 있다. 향후 지속적인 연구를 통해 분류 성능을 보다 높인다면, 사람들이 뉴스를 접할 때 그 뉴스의 특정 논조 성향에 대해 우선적으로 파악하여 객관성을 유지한 채 정보에 접근할 수 있도록 도와주는 신뢰성 있는 툴을 만들 수 있을 것이라 기대한다.
최근 빅데이터 분석은 기업과 전문가뿐만 아니라 개인이나 비전문가들도 큰 관심을 갖는 분야로 발전하였다. 그에 따라 현재 공개된 데이터 또는 직접 수집한 이터를 분석하여 마케팅, 사회적 문제 해결 등에 활용되고 있다. 국내에서도 다양한 기업들과 개인이 빅데이터 분석에 도전하고 있지만 빅데이터 공개의 제한과 수집의 어려움으로 분석 초기 단계에서부터 어려움을 겪고 있다. 본 논문에서는 빅데이터 공유를 방해하는 개인정보, 빅트래픽 등의 요소들에 대한 기존 연구와 사례들을 살펴보고 정책기반의 해결책이 아닌 시스템을 통해서 빅데이터 공유 제한 문제를 해결 할 수 있는 클라이언트-서버 모델을 이용해 빅데이터를 공개 및 사용 할 때 발생하는 문제점들을 해소하고 공유와 분석 활성화를 도울 수 있는 방안에 대해 기술한다. 클라이언트-서버 모델은 SPARK를 활용해 빠른 분석과 사용자 요청을 처리하며 Server Agent와 Client Agent로 구분해 데이터 제공자가 데이터를 공개할 때 서버 측의 프로세스와 데이터 사용자가 데이터를 사용하기 위한 클라이언트 측의 프로세스로 구분하여 설명한다. 특히, 빅데이터 공유, 분산 빅데이터 처리, 빅트래픽 문제에 초점을 맞추어 클라이언트-서버 모델의 세부 모듈을 구성하고 각 모듈의 설계 방법에 대해 제시하고자 한다. 클라이언트-서버 모델을 통해서 빅데이터 공유문제를 해결하고 자유로운 공유 환경을 구성하여 안전하게 빅데이터를 공개하고 쉽게 빅데이터를 찾는 이상적인 공유 서비스를 제공할 수 있다.
본 연구는 경제적으로 국내에 큰 영향을 주었던 글로벌 금융위기를 기반으로 총 10년의 연간 기업데이터를 이용한다. 먼저 시대 변화 흐름에 일관성있는 부도 모형을 구축하는 것을 목표로 금융위기 이전(2000~2006년)의 데이터를 학습한다. 이후 매개 변수 튜닝을 통해 금융위기 기간이 포함(2007~2008년)된 유효성 검증 데이터가 학습데이터의 결과와 비슷한 양상을 보이고, 우수한 예측력을 가지도록 조정한다. 이후 학습 및 유효성 검증 데이터를 통합(2000~2008년)하여 유효성 검증 때와 같은 매개변수를 적용하여 모형을 재구축하고, 결과적으로 최종 학습된 모형을 기반으로 시험 데이터(2009년) 결과를 바탕으로 딥러닝 시계열 알고리즘 기반의 기업부도예측 모형이 유용함을 검증한다. 부도에 대한 정의는 Lee(2015) 연구와 동일하게 기업의 상장폐지 사유들 중 실적이 부진했던 경우를 부도로 선정한다. 독립변수의 경우, 기존 선행연구에서 이용되었던 재무비율 변수를 비롯한 기타 재무정보를 포함한다. 이후 최적의 변수군을 선별하는 방식으로 다변량 판별분석, 로짓 모형, 그리고 Lasso 회귀분석 모형을 이용한다. 기업부도예측 모형 방법론으로는 Altman(1968)이 제시했던 다중판별분석 모형, Ohlson(1980)이 제시한 로짓모형, 그리고 비시계열 기계학습 기반 부도예측모형과 딥러닝 시계열 알고리즘을 이용한다. 기업 데이터의 경우, '비선형적인 변수들', 변수들의 '다중 공선성 문제', 그리고 '데이터 수 부족'이란 한계점이 존재한다. 이에 로짓 모형은 '비선형성'을, Lasso 회귀분석 모형은 '다중 공선성 문제'를 해결하고, 가변적인 데이터 생성 방식을 이용하는 딥러닝 시계열 알고리즘을 접목함으로서 데이터 수가 부족한 점을 보완하여 연구를 진행한다. 현 정부를 비롯한 해외 정부에서는 4차 산업혁명을 통해 국가 및 사회의 시스템, 일상생활 전반을 아우르기 위해 힘쓰고 있다. 즉, 현재는 다양한 산업에 이르러 빅데이터를 이용한 딥러닝 연구가 활발히 진행되고 있지만, 금융 산업을 위한 연구분야는 아직도 미비하다. 따라서 이 연구는 기업 부도에 관하여 딥러닝 시계열 알고리즘 분석을 진행한 초기 논문으로서, 금융 데이터와 딥러닝 시계열 알고리즘을 접목한 연구를 시작하는 비 전공자에게 비교분석 자료로 쓰이기를 바란다.
의료IT 서비스의 유망 분야인 정신건강 증진을 위한 주관적 웰빙 서비스(subjective well-being service) 구현의 핵심은 개인의 주관적 웰빙 상태를 정확하고 무구속적이며 비용 효율적으로 측정하는 것인데 이를 위해 보편적으로 사용되는 설문지에 의한 자기보고나 신체부착형 센서 기반의 측정 방법론은 정확성은 뛰어나나 비용효율성과 무구속성에 취약하다. 비용효율성과 무구속성을 보강하기 위한 온라인 텍스트 기반의 측정 방법은 사전에 준비된 감정어 어휘만을 사용함으로써 상황에 따라 감정어로 볼 수 있는 이른바 상황적 긍부정성(contextual polarity)을 고려하지 못하여 측정 정확도가 낮다. 한편 기존의 상황적 긍부정성을 활용한 감성분석으로는 주관적 웰빙 상태인 맥락에서의 감성분석을 할 수 있는 감정어휘사전이나 온톨로지가 구축되어 있지 않다. 더구나 온톨로지 구축도 매우 노력이 소요되는 작업이다. 따라서 본 연구의 목적은 온라인상에 사용자의 의견이 표출된 비정형 텍스트로부터 주관적 웰빙과 관련한 상황감정어를 추출하고, 이를 근거로 상황적 긍부정성 파악의 정확도를 개선하는 방법을 제안하는 것이다. 기본 절차는 다음과 같다. 먼저 일반 감정어휘사전을 준비한다. 본 연구에서는 가장 대표적인 디지털 감정어휘사전인 SentiWordNet을 사용하였다. 둘째, 정신건강지수를 동적으로 추정하는데 필요한 비정형 자료인 Corpora를 온라인 서베이로 확보하였다. 셋째, Corpora로부터 세 가지 종류의 자원을 확보하였다. 넷째, 자원을 입력변수로 하고 특정 정신건강 상태의 지수값을 종속변수로 하는 추론 모형을 구축하고 추론 규칙을 추출하였다. 마지막으로, 추론 규칙으로 정신건강 상태를 추론하였다. 본 연구는 감정을 분석함에 있어, 기존의 연구들과 달리 상황적 감정어를 적용하여 특정 도메인에 따라 다양한 감정 어휘를 파악할 수 있다는 점에서 독창성이 있다.
앙상블 분류기란 개별 분류기보다 더 좋은 성과를 내기 위해 다수의 분류기를 결합하는 것을 의미한다. 이와 같은 앙상블 분류기는 단일 분류기의 일반화 성능을 향상시키는데 매우 유용한 것으로 알려져 있다. 랜덤 서브스페이스 앙상블 기법은 각각의 기저 분류기들을 위해 원 입력 변수 집합으로부터 랜덤하게 입력 변수 집합을 선택하며 이를 통해 기저 분류기들을 다양화 시키는 기법이다. k-최근접 이웃(KNN: k nearest neighbor)을 기저 분류기로 하는 랜덤 서브스페이스 앙상블 모형의 성과는 단일 모형의 성과를 개선시키는 데 효과적인 것으로 알려져 있으며, 이와 같은 랜덤 서브스페이스 앙상블의 성과는 각 기저 분류기를 위해 랜덤하게 선택된 입력 변수 집합과 KNN의 파라미터 k의 값이 중요한 영향을 미친다. 하지만, 단일 모형을 위한 k의 최적 선택이나 단일 모형을 위한 입력 변수 집합의 최적 선택에 관한 연구는 있었지만 KNN을 기저 분류기로 하는 앙상블 모형에서 이들의 최적화와 관련된 연구는 없는 것이 현실이다. 이에 본 연구에서는 KNN을 기저 분류기로 하는 앙상블 모형의 성과 개선을 위해 각 기저 분류기들의 k 파라미터 값과 입력 변수 집합을 동시에 최적화하는 새로운 형태의 앙상블 모형을 제안하였다. 본 논문에서 제안한 방법은 앙상블을 구성하게 될 각각의 KNN 기저 분류기들에 대해 최적의 앙상블 성과가 나올 수 있도록 각각의 기저 분류기가 사용할 파라미터 k의 값과 입력 변수를 유전자 알고리즘을 이용해 탐색하였다. 제안한 모형의 검증을 위해 국내 기업의 부도 예측 관련 데이터를 가지고 다양한 실험을 하였으며, 실험 결과 제안한 모형이 기존의 앙상블 모형보다 기저 분류기의 다양화와 예측 성과 개선에 효과적임을 알 수 있었다.
전자상거래에서 소비자들의 구매 의사결정에 판매 제품을 이미 구매하여 사용한 고객의 리뷰가 중요한 영향을 미치고 있다. 전자상거래 업체들은 고객들이 제품 리뷰를 남기도록 유도하고 있으며, 구매고객들도 적극적으로 자신의 경험을 공유하고 있다. 한 제품에 대한 고객 리뷰가 너무 많아져서 구매하려는 제품의 모든 리뷰를 읽고 제품의 장단점을 파악하는 것은 무척 힘든 일이 되었다. 전자상거래 업체들과 연구자들은 텍스트 마이닝을 활용하여 리뷰들 중에서 유용한 리뷰들의 속성을 파악하거나 유용한 리뷰와 유용하지 않은 리뷰를 미리 분류하는 노력을 수행하고 있다. 고객들에게 유용한 리뷰를 필터링하여 전달하는 방안이다. 본 연구에서는 문서-단어 매트릭스에서 단어의 제거 기준으로 온라인 고객 리뷰가 유용한 지, 그렇지 않은지를 구분하는 문제에서 단어들이 유용 리뷰 집합과 유용하지 않은 리뷰집합에 중복하여 등장하는 정도를 측정한 중립도를 제시한다. 제시한 중립도를 희소성과 함께 분석에 활용하여 제거할 단어를 선정한 후에 각 분류 알고리즘의 성과를 비교하였다. 최적의 성과를 보이는 중립도를 찾았으며, 희소성과 중립도에 따라 단어를 선택적으로 제거하였다. 실험은 Amazon.com의 'Cellphones & Accessories', 'Movies & TV program', 'Automotive', 'CDs & Vinyl', 'Clothing, Shoes & Jewelry' 제품 분야 고객 리뷰와 사용자들의 리뷰에 대한 평가를 활용하였다. 전체 득표의 수가 4개 이상인 리뷰 중에서 제품 카테고리 별로 유용하다고 판단되는 1,500개의 리뷰와 유용하지 않다고 판단되는 1,500개의 리뷰를 무작위로 추출하여 연구에 사용하였다. 데이터 집합에 따라 정확도 개선 정도가 상이하며, F-measure 기준으로는 두 알고리즘에서 모두 희소성과 중립도에 기반하여 단어를 제거하는 방안이 더 성과가 높았다. 하지만 Information Gain 알고리즘에서는 Recall 기준으로는 5개 제품 카테고리 데이터에서 언제나 희소성만을 기준으로 단어를 제거하는 방안의 성과가 높았으며, SVM에서는 전체 단어를 활용하는 방안이 Precision 기준으로 성과가 더 높았다. 따라서, 활용하는 알고리즘과 분석 목적에 따라서 단어 제거 방안을 고려하는 것이 필요하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.