• Title/Summary/Keyword: 지능복합재료

Search Result 70, Processing Time 0.028 seconds

Antenna Integration with Composite Sandwich Structure using Transmission/Reflection Methods of Incident Wave (신호의 투과/반사법을 이용한 복합재료 샌드위치 구조 속으로의 안테나 삽입)

  • You, C.S.;Hwang, W.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.55-58
    • /
    • 2005
  • The present study aims to design electrically and structurally effective antenna structures in order that the structural surface itself could become the antenna. The basic design concept is composite sandwich structure in which microstrip antenna is embedded and this is termed composite smart structure (CSS). The most important outstanding problem is that composite materials of structural function cannot be used without reducing antenna efficiency. Unfortunately, such materials have high electrical loss. This is a significant design problem that needs to be solved in practical applications. Therefore, the effects of composites facesheet on antenna performances are investigated in the first stage and changes in the gain of microstrip antenna due to composites facesheet have been determined. ‘Open condition’ is defined when gain is maximized and is a significant new concept for the design of high-gain antennas considering bandwidth in practical application. The open condition can be made with the outer facesheet by controlling its position. In the design of CSS, glass/epoxy composites and Nomex honeycomb were used with exploiting open condition. Experiments, confirm that the gain is improved and the bandwidth is also as wide as specified in our requirements. With the open condition, wideband antenna can be integrated with mechanical structures without reducing any electrical performances, as confirmed experimentally here.

  • PDF

Study on Thermal Behavior of Unidirectional Composite Materials using Embedded Optical Fiber Sensors (삽입되어진 광섬유 센서를 이용한 일방향 적층 복합재료의 열적 거동 연구)

  • 김승택;전흥재;최흥섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.251-257
    • /
    • 1999
  • Smart structure that contains sensors, which are either embedded in a composite material or attached to a structure, is currently receiving considerable attention. Fiber Bragg grating sensor, one of the optical fiber sensors, has been widely used to sense strain and temperature for smart structures since both parameters change the resonant frequency of the grating. In this paper, according to the various heating and cooling conditions the thermal behavior of unidirectional composite material was monitored by embedding the fiber Bragg grating sensors in the longitudinal and transverse directions of unidirectional composites. The thermal behavior of unidirectional composite material was monitored for various heating and cooling rates and applied pressure. It was found that the thermal behavior was unaffected by pressure variations and heating and cooling rates applied to the composites. The thermal strains were measured by considering the shift in Bragg wavelength that was generated by the thermal expansion of composite specimen. The longitudinal and transverse C.T.E.'s were also obtained from the corresponding temperature-thermal strain curves.

  • PDF

A Study on the Application of Ni-Ti Shape Memory Alloy Wire Embedded in Composite Beam as a Sensor. (복합재료 보에 삽입된 Ni-Ti 형상기억합금 선의 센서로의 응용을 위한 연구)

  • Lee, Chang-Ho;Lee, Jung-Ju;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.285-292
    • /
    • 1998
  • Shape Memory Alloy(SMA) has been used in many engineering fields because of its good characteristics of actuator. For example, SMA wire can be embedded easily in the polymer composite laminate and then be used as actuator for structural control. Since the strain have a significant influence on the electrical resistance of SMA wire, It is a possible to use the SMA wire as a sensor of such physical quantities. In this study, the possibility for the application of Ni-Ti SMA wire as a sensor embedded within a composite laminate is investigated.

  • PDF

특집 : IT 융복합의료기기 기술 - 가상현실 기반 지능형 스포메디(Spo-medi) 융복합 기술

  • Jeong, Gyeong-Yeol;Im, Byeong-Ju;Park, Chang-Dae
    • 기계와재료
    • /
    • v.23 no.1
    • /
    • pp.6-13
    • /
    • 2011
  • 우리나라는 2000년에 고령화 사회에 공식적으로 진입하였으며 고령화는 더욱 가속화될 전망이다. 노인의 경우 신체적, 인지 및 심리적, 사회적 기능이 저하되어 올바른 사회활동을 하기가 어려울 뿐만 아니라 특성상 새로운 활동을 기피하고 쉽게 지루해 하며 소극적인 성격으로 인해 운동참여 유도가 어렵다. 노인의 건강 증진을 위해 운동 실천률을 높이는 것이 필요하며 쉽게 접근할 수 있고 상해의 위험성이 적은 환경이 제공되어야 한다. 가상현실을 기반으로 한 스포메디 융복합 기술은 스포츠를 가상현실로 구현하여 의료적 효과를 극대화 할 수 있는 기술로써 사용자의 흥미를 유발하고 운동 및 치료의 효과를 동시에 가능하게 하는 기술이다. 본 논문에서는 노인의 특징을 분석하여 가상현실 스포메디 융복합 기술이 갖춰야할 특성에 대해 제시하고, 관련 개발 기술의 연구 및 개발 동향과 스포메디 관련 시장 동향 및 정부 정책 방향에 대해서 분석하였다.

  • PDF

Evaluation of Mechanical Properties and Damage Sensing of CNT-Polypropylene Composites by Electro-Micromechanical Techniques (CNT-폴리프로필렌 복합재료의 기계적 물성평가 및 전기 미세평가법을 이용한 손상감지)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Kim, Hak-Soo;Kim, Dae-Sik;Lee, Choon-Soo;Park, Joung-Man
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • CNT-polypropylene (PP) composites were compounded by solvent dispersion method with uniform dispersion by using twin screw extruder. Damage sensing effects based on conductive carbon nanotubes (CNT) were evaluated to monitor the internal damage of CNT-PP composites using electrical resistance measurement. Mechanical and interfacial properties of CNT-PP composites were investigated and compared with neat PP. The mechanical properties of PP matrix were improved after adding CNT, because of the reinforcing effect of CNT fillers. In order to monitor the internal damage of CNT-PP composite, the change in electrical resistance of the composites was measured under fatigue loading and bending tests. CNT fillers exhibited good sensing under electrical resistance measurements. It is shown that CNT-PP composites with low CNT contents allow identifying critical cyclic loading, which are found to be accompanied with the internal failure.

Deflection Prediction of Piezo-composite Unimorph Actuator Considering Material Property Change of Piezoelectric Single Crystal for Compression Stress Variation (압축 응력 변화에 대한 압전 단결정의 물성 변화를 고려한 압전 복합재료 작동기의 작동 변위 예측)

  • Yoon, Bum-Soo;Park, Ji-Won;Yoon, Kwang-Joon;Choi, Hyun-Young
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • In this study, LIPCA-S2 actuator with a piezoelectric single crystal layer and a carbon/epoxy layer was designed and evaluated to increase actuation performance of piezo-composite unimorph actuator. A curvature change model generated by the induced strain of a piezoelectric layer was used to predict the tip displacement of the piezo-composite unimorph cantilever. However, we found that there was big difference between the predicted and the measured tip displacement of LIPCA-S2 cantilever actuator when we used the previous linear prediction model. A new prediction model considering the change of piezoelectric strain coefficient and elastic modulus for the compression stress variation of the PMN-29PT single crystal layer was used and it was found that the difference between the predicted and the measured tip displacement reduced considerably.

HIGHER ORDER ZIG-ZAG PLATE THEORY FOR COUPLED THERMO-ELECTRIC-MECHANICAL SMART STRUCTURES (열-기계-전기 하중이 완전 연계된 지능 복합재 평판의 지그재그 고차이론)

  • 오진호;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.114-117
    • /
    • 2001
  • A higher order zig-zag plate theory is developed to refine accurately predict fully coupled of the mechanical, thermal, and electric behaviors. Both the displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux The numerical examples of coupled and uncoupled analysis are demonstrated the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings.

  • PDF

Monitoring of Fatigue Damage of Composite Laminates Using Embedded Intensity-Based Optical Fiber Sensors (광강도형 광섬유 센서를 이용한 복합재 적충판의 피로손상 감시)

  • 이동춘;이정주;서대철
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.124-127
    • /
    • 2000
  • In this study, a technique for monitoring of fatigue damage of composite laminates by measuring the stiffness change using embedded intensity-based optical fiber sensors was investigated. Firstly, the underlying measurement principle and structure of intensity-based sensors and then a simple stiffness conversion process was explained. The monitoring technique was evaluated by fatigue tests of composite laminates with an embedded intensity-based sensor. From the test results, the response of the intensity-based sensor showed good correlation with that of surface mounted extensometer. Therefore, it can be concluded that the intensity-based sensors have good potential for the monitoring of fatigue damage of composite structures under fatigue loading. In addition, it could be confirmed that the intensity-based sensors have higher resistance to fatigue than the commercial electrical strain gauge.

  • PDF

Development of Novel Impact Paint Sensor by Using Graphene based Smart Nano Composite (그래핀 기반 지능형 나노복합소재를 이용한 고감도 임팩트 페인트 센서 개발 연구)

  • Kim, Sung Yong;Park, Sehoon;Choi, Gyoung Rak;Park, Hyung-Ki;Kang, Inpil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.247-252
    • /
    • 2014
  • This paper presents a novel impact sensor which can be fabricated with smart paint made of grapheme. This smart nano paint can be easily installed on structures using a spray-on technique and that can make the sensor low cost and practical. The graphene effectively improves the piezoresistivity of the smart paint and that is available to achieve sensitive impact sensor with high gauge factor. The nano smart-paint can detect sufficient impact to cover the damaged energy range of the composite around 1~3J. The voltage outputs from the sprayed paints show fairly linear responses after signal processing. The impact makes deformation of the structure and it brings change of piezoresistivity of the paint and those converts into voltage output consequently by means of a simple signal processing system. The nano smart paint is lightweight and easily applied to the structural surface, and there is no stress concentration. The nano smart paint is expected to be a cost effective and sensitive multi-functional sensor for composites and other damage monitoring applications in the field of structural health monitoring.

Fabrication of Shell Actuator using Woven Type Smart Soft Composite (직조 형태의 지능형 연성 복합재료를 이용한 쉘 구동기의 제작)

  • Han, Min-Woo;Song, Sung-Hyuk;Chu, Won-Shik;Lee, Kyung-Tae;Lee, Daniel;Ahn, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.39-46
    • /
    • 2013
  • Smart material such as SMA (Shape Memory Alloy) has been studied in various ways because it can perform continuous, flexible, and complex actuation in simple structure. Smart soft composite (SSC) was developed to achieve large deformation of smart material. In this paper, a shell actuator using woven type SSC was developed to enhance stiffness of the structure while keeping its deformation capacity. The fabricated actuator consisted of a flexible polymer and woven structure which contains SMA wires and glass fibers. The actuator showed various actuation motions by controlling a pattern of applied electricity because the SMA wires are embedded in the structure as fibers. To verify the actuation ability, we measured its maximum end-edge bending angle, twisting angle, and actuating force, which were $103^{\circ}$, $10^{\circ}$, and 0.15 N, respectively.