• Title/Summary/Keyword: 지능구조모형

Search Result 149, Processing Time 0.029 seconds

Evaluation of Interpretability for Generated Rules from ANFIS (ANFIS에서 생성된 규칙의 해석용이성 평가)

  • Song, Hee-Seok;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.123-140
    • /
    • 2009
  • Fuzzy neural network is an integrated model of artificial neural network and fuzzy system and it has been successfully applied in control and forecasting area. Recently ANFIS(Adaptive Network-based Fuzzy Inference System) has been noticed widely among various fuzzy neural network models because of outstanding performance of control and forecasting accuracy. ANFIS has capability to refine its fuzzy rules interactively with human expert. In particular, when we use initial rule structure for machine learning which is generated from human expert, it is highly probable to reach global optimum solution as well as shorten time to convergence. We propose metrics to evaluate interpretability of generated rules as a means of acquiring domain knowledge and compare level of interpretability of ANFIS fuzzy rules to those of C5.0 classification rules. The proposed metrics also can be used to evaluate capability of rule generation for the various machine learning methods.

  • PDF

Study on Water Stage Prediction using Neuro-Fuzzy with Genetic Algorithm (Neuro-Fuzzy와 유전자알고리즘을 이용한 수위 예측에 관한 연구)

  • Yeo, Woon-Ki;Seo, Young-Min;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.382-382
    • /
    • 2011
  • 최근의 극심한 기상이변으로 인하여 발생되는 유출량의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우-유출 관계는 유역의 수많은 시 공간적 변수들에 의해 영향을 받기 때문에 매우 복잡하여 예측하기 힘든 요소이며, 과거에는 추계학적 예측모형이나 확정론적 예측모형 혹은 경험적 모형 등을 사용하여 유출량을 예측하였으나 최근에는 인공신경망과 퍼지모형 그리고 유전자 알고리즘과 같은 인공지능기반의 모형들이 많이 사용되고 있다. 하지만 유출량을 예측하고자 할 때 학습자료 및 검정자료로써 사용되는 유출량은 수위-유량 관계곡선식으로부터 구하는 경우가 대부분으로 이는 이렇게 유도된 유출량의 경우 오차가 크기 때문에 그 신뢰성에 문제가 있을 것으로 판단된다. 따라서 본 논문에서는 수위를 직접 예측함으로써 이러한 오차의 문제점을 극복 하고자 한다. Neuro-Fuzzy 모형은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 소속함수를 최적화함으로서 모형의 구조를 스스로 조직화한다. 따라서 수학적 알고리즘의 적용이 어려운 강우와 유출관계를 하천유역이라는 시스템에서 발생된 신호체계의 입 출력패턴으로 간주하고 인간의 사고과정을 근거로 추론과정을 거쳐 수문계의 예측에 적용할 수 있을 것이다. 유전자 알고리즘은 적자생존의 생물학 원리에 바탕을 둔 최적화 기법중의 하나로 자연계의 생명체 중 환경에 잘 적응한 개체가 좀 더 많은 자손을 남길 수 있다는 자연선택 과정과 유전자의 변화를 통해서 좋은 방향으로 발전해 나간다는 자연 진화의 과정인 자연계의 유전자 메커니즘에 바탕을 둔 탐색 알고리즘이다. 즉, 자연계의 유전과 진화 메커니즘을 공학적으로 모델화함으로써 잠재적인 해의 후보들을 모아 군집을 형성한 뒤 서로간의 교배 혹은 변이를 통해서 최적 해를 찾는 계산 모델이다. 이러한 유전자 알고리즘은 전역 샘플링을 중심으로 한 수법으로 해 공간상에서 유전자의 개수만큼 복수의 탐색점을 설정할 뿐만 아니라 교배와 돌연변이 등으로 좁아지는 탐색점 바깥의 영역으로 탐색을 확장할 수 있기 때문에 지역해에 빠질 위험성이 크게 줄어든다. 따라서 예측과 패턴인식에 강한 뉴로퍼지 모형의 해 탐색방법을 유전자 알고리즘을 사용한다면 보다 정확한 해를 찾는 것이 가능할 것으로 판단된다. 따라서 본 논문에서는 선행우량 및 상류의 수위자료로부터 하류의 단시간 수위예측에 관해 연구하였으며, 이를 위해 유전자 알고리즘을 이용항여 소속함수를 최적화 시키는 형태의 Neuro-Fuzzy모형에 대하여 연구하였다.

  • PDF

The Prediction of Currency Crises through Artificial Neural Network (인공신경망을 이용한 경제 위기 예측)

  • Lee, Hyoung Yong;Park, Jung Min
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.19-43
    • /
    • 2016
  • This study examines the causes of the Asian exchange rate crisis and compares it to the European Monetary System crisis. In 1997, emerging countries in Asia experienced financial crises. Previously in 1992, currencies in the European Monetary System had undergone the same experience. This was followed by Mexico in 1994. The objective of this paper lies in the generation of useful insights from these crises. This research presents a comparison of South Korea, United Kingdom and Mexico, and then compares three different models for prediction. Previous studies of economic crisis focused largely on the manual construction of causal models using linear techniques. However, the weakness of such models stems from the prevalence of nonlinear factors in reality. This paper uses a structural equation model to analyze the causes, followed by a neural network model to circumvent the linear model's weaknesses. The models are examined in the context of predicting exchange rates In this paper, data were quarterly ones, and Consumer Price Index, Gross Domestic Product, Interest Rate, Stock Index, Current Account, Foreign Reserves were independent variables for the prediction. However, time periods of each country's data are different. Lisrel is an emerging method and as such requires a fresh approach to financial crisis prediction model design, along with the flexibility to accommodate unexpected change. This paper indicates the neural network model has the greater prediction performance in Korea, Mexico, and United Kingdom. However, in Korea, the multiple regression shows the better performance. In Mexico, the multiple regression is almost indifferent to the Lisrel. Although Lisrel doesn't show the significant performance, the refined model is expected to show the better result. The structural model in this paper should contain the psychological factor and other invisible areas in the future work. The reason of the low hit ratio is that the alternative model in this paper uses only the financial market data. Thus, we cannot consider the other important part. Korea's hit ratio is lower than that of United Kingdom. So, there must be the other construct that affects the financial market. So does Mexico. However, the United Kingdom's financial market is more influenced and explained by the financial factors than Korea and Mexico.

제안기반 자동 거래협상 시장에서의 사용자 에이전트를 위한 최적 거래안 탐색 전략의 개발

  • 홍준석;김우주;송용욱
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.05a
    • /
    • pp.140-148
    • /
    • 2002
  • 컴퓨터를 통해 편리한 생활을 추구해온 인간들은 전자상거래 분야에서도 이러한 욕구를 충족시키기 위해 자동협상이라는 기능을 요구하게 되었다. 지능형 에이전트를 이용한 자동협상은 인간의 거래협상 업무의 부담을 많은 부분을 덜어주고 있어 자동협상 에이전트에 관한 연구들이 활성화되고 있다 소비자간 전자상거래에서는 다수의 자동협상 에이전트 연구들이 경매시장에서의 자동협상에 초점을 맞추고 있는데 반해, 가격 이외의 여러 거래속성을 갖는 상품에 대한 제안기반 협상시장에서의 자동협상 에이전트에 관한 연구들이 최근에 활발히 이루어지고 있다. 본 연구에서는 소비자간 전자상거래에서 거래속성의 변화에 따라 개인의 효용가치의 차이를 이용한 다속성 상품의 제안기반 협상시장이 가져야할 특성에 대해 연구하고, 이를 기반으로 자동 거래협상을 수행에 필요한 거래속성 변화에 따른 소비자 개인의 선호체계를 표현하기 위한 방법을 개발하였다. 그리고 이러한 자동 거래협상을 공정하게 수행하기 위해 협상시장이 가져야할 특징과 프로토콜을 제안하고 시장운영 에이전트 시스템의 구조를 설계하였다. 마지막으로 이러한 분산형 시장구조를 갖는 제안기반의 협상시장에 참여하는 사용자 에이전트 시스템이 최적의 거래상대와 최적의 거래안을 찾기 위한 탐색방법을 구체적으로 개발하였다. 본 연구의 결과를 통하여 소비자간 전자상거래에서 구매자 뿐만 아니라 판매자도 협상결과에 따른 거래로 얻어지는 자신의 효용을 극대화할 수 있는 공정한 협상시장을 운영할 수 있을 뿐만 아니라 사용자들도 손쉽게 자신의 협상 선호체계를 쉽게 표현하고, 표현된 선호체계를 반영한 자동 거래협상을 수행할 수 있을 것 이다. 기존의 UN/EDIFACT표준을 사용하고 있는 EDI환경과 기존 VAN 방식의 EDI 중계 시스템과 연동되며, 향후 관세청의 XML/EDI 표준 시행을 미리 대비하는 선도연구로서 자리매김이 된다. 본 연구에서는 개발된 XML/EDI 통관시스템은 향후, 서비스의 최대 걸림돌이 되어왔던 값비싼 EDI 사용료의 부담에서 벗어날 수 있게 할 것이며, 저렴한 EDI구축/운영 비용으로 전자문서교환의 활성화와 XML이 인터넷 기반의 문서유통 표준으로 자리매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without

  • PDF

Development of a Adaptive Knowledge Base Object Model for Intelligent Tutoring System (지능형 교육 시스템을 위한 적응적 지식베이스 객체 모형 개발)

  • Kim Yong-Beom;Kim Yung-Sik
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.421-428
    • /
    • 2006
  • Intelligent Tutoring System(ITS), which offers individualized learning environment that consider many learners' variable, is realized by the effective alternative to take the place of domain expert. Accordingly, research on Learning Companion System(LC) is currently noticing. However, to develop LCS which applies effective interaction, it is necessary to combine several LCs, and personalized knowledge base have to be made first. Therefore, in this paper, we propose the 'Knowledge Base Object Medel', which is based on connectionist' in cognition structure, represents learner's knowledge to self-learnig object, and grows adaptive object by proprietor, verify the validity. This model lays the groundwork for design of personalized knowledge base, offers clue to development of adaptive ITS using knowledge base object.

A Study on DSRC based ITS Telecommunication Networks Architecture (DSRC 기반 지능형 교통 시스템의 통신망 구조 연구)

  • 이성룡;최경일;이희상;김윤배
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.197-200
    • /
    • 2000
  • 지능형 교통 시스템(ITS. Intelligent Transportation System)은 도로, 차량, 신호시스템 등 기본 교통체계의 구성요소에 첨단 정보통신 기술을 접목함으로써 교통시설의 기반구조에 대해 지능화와 첨단화를 꾀하고자 하는 차세대 교통체계로 우리 나라가 처한 교통 환경의 실태와 기존 교통체계의 문제점을 고려할 때 당면한 교통 문제를 해결해 줄 수 있는 유력한 방안으로 여겨진다. ITS는 운전자 혹은 도로 교통 시스템에 각종 응용 서비스를 제공하게 되는데 이를 위해서는 도로변에 위치하는 기지국 등의 ITS 기반 요소들과 도로를 운행 중인 차량간의 빠르고 정확한 정보교환이 가능해야 한다. 정보교환을 위한 통신 기술 중 하나인 DSRC(Dedicated Short Range Communication)는 저출력의 양방향 통신 특성을 갖고 ITS가 제공하는 대부분의 서비스에 다양하게 적용될 수 있으므로 효과적인 ITS의 구축과 빠른 확산을 위해 필수적인 기술로 간주되고 있다. 본 논문에서는 이러한 DSRC를 기반으로 하는 ITS통신망의 구조 정립에 대해 논하고 있다. 효과적인 ITS 서비스를 위해서는 물리적 통신망은 물론 통신망을 구성하고 있는 각 요소들과 관련되어있는 정보시스템들이 동시에 연구되어야 하므로 ISCNA(Information Systems and Communication Networks Architecture) 준거모형에 의한 접근을 하였다. 세부적인 측면으로는 서버 시스템의 구조, 서버와 서버간, 서버와 노변 기지국, 노변 기지국과 차량 단말 간의 통신망 구조 정립에 대해 살펴보았다.

  • PDF

A Study on the Use of Artificial Intelligence Speakers for the People with Physical disability using Technology Acceptance Model (기술수용모델을 활용한 지체장애인의 인공지능 스피커 사용 의도에 관한 연구)

  • Park, Hye-Hyun;Lee, Sun-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.283-289
    • /
    • 2021
  • Many people with disabilities have shown interest in artificial intelligence speakers that serves as the main hub of the smart home. Therefore, the purpose of this study was to identify the intention of people with disabilities to use such speakers. The focus is on those with physical disabilities, a segment that accounts for the largest number of disability types. Based on the theoretical model of technology acceptance, the effect of perceived ease of use and perceived usefulness of artificial intelligence speakers by people with disabilities was analyzed using Structural Equation Modeling (SEM). Research has confirmed that the technology acceptance model is suitable for identifying the intention to use artificial intelligence speakers by people with disabilities, and specifically that the perceived ease of use has a significant impact on usefulness. Furthermore, the perceived ease of use for people with disabilities did not have a statistically significant effect on their intent to use whereas the perceived usefulness was shown to have a significant effect on the same. This study is meaningful as a foundation for developing customized artificial intelligence speaker services and improving the use of artificial intelligence speakers by people with disabilities.

Development of KBASIN-HSPF system for estimating parameter of watershed based model (유역모형 파라미터 산출을 위한 KBASIN-HSPF 시스템 개발)

  • Park, Dae-Hee;Ha, Sung-Ryong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.328-332
    • /
    • 2006
  • 환경모델링 기법은 비선형 오염유출현상을 구조화하여 배출특성 규명 및 정책대안의 영향예측 도구로서 활용도가 증가하고 있다. 반면 복잡한 입력 파라미터의 구성은 모형운영에 있어 비정량적 수치를 적용할 수 있는 가능성을 내포하고 있다. 이러한 한계성을 극복하기 위해 최근 들어 GIS와 정보기술의 연계를 통한 자료관리 및 모형 매개변수 산출을 위한 연구들이 활발히 진행 중에 있다. GIS-모델링 분야의 기술적 성장에도 불구하고 정보구축의 시점, 주기, 구축 형태 등의 통일화가 이루어지지 않았다. 따라서 BASINS과 같은 기 구축된 정보 분석체계를 사용하고자 할 때 단위사업별로 구축된 공간정보의 구조해석을 다시 수행해야 하는 문제를 지니고 있다. 이는 구축된 정보를 사용하여 해석하고자 하는 주체가 분명하지 않고, 분석모델에서 요구하는 입력 자료의 구조를 명확하게 해석할 수 있는 정보기술과 분석기술의 연계부족으로 발생한 문제이다. 이에 본 연구의 목적은 NGIS사업을 통해 축척된 지형공간 데이터베이스와 GIS의 공간분석기능을 연계하여 유역 오염원 기상 공간정보의 관리, 유역 오염유출모형인 HSPF(Hydrologic Simulation Program-Fortran)의 운영정보 생성을 지원하는 지능형 정보관리시스템을 개발하는데 있다. 주 연구내용은 시스템 분석 및 설계, 기초 데이터 수집과 DB 구축, 지형 매개변수 산정을 위한 GIS-HSPF의 통합 인터페이스 구축이다. 개발된 KBASIN-HSPF는 EPA에 의해 개발된 BASIN의 유역분할, 하천망생성, 지형특성계수 산정 기능과 함께 우리나라의 지형.오염원.기상정보의 저장구조를 고려한 데이터 모델링, Tissen망에 준한 강우자료 생성 그리고 HSPF 모형운영정보 산정 및 전환기능을 포함하고 있다. KBASIN-HSPF는 유역기반 점.비점오염원 정보를 통합 관리하고자 하는 오염총량관리제의 기술적 정보관리 환경으로 활용가능하며, 기존의 오염유출모델링을 위해 자료준비부터 정보연계, 모형운영까지 분산된 환경에서 수행되었던 것을 통합환경하에서 진행함으로써 정보의 질적보장과 정보전환의 표준화방안을 제시하는 정보분석시스템이다.

  • PDF

Risk Estimates of Structural Changes in Freight Rates (해상운임의 구조변화 리스크 추정)

  • Hyunsok Kim
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.4
    • /
    • pp.255-268
    • /
    • 2023
  • This paper focuses on the tests for generalized fluctuation in the context of assessing structural changes based on linear regression models. For efficient estimation there has been a growing focus on the structural change monitoring, particularly in relation to fields such as artificial intelligence(hereafter AI) and machine learning(hereafter ML). Specifically, the investigation elucidates the implementation of structural changes and presents a coherent approach for the practical application to the BDI(Baltic Dry-bulk Index), which serves as a representative maritime trade index in global market. The framework encompasses a range of F-statistics type methodologies for fitting, visualization, and evaluation of empirical fluctuation processes, including CUSUM, MOSUM, and estimates-based processes. Additionally, it provides functionality for the computation and evaluation of sequences of pruned exact linear time(hereafter PELT).

GA-based Normalization Approach in Back-propagation Neural Network for Bankruptcy Prediction Modeling (유전자알고리즘을 기반으로 하는 정규화 기법에 관한 연구 : 역전파 알고리즘을 이용한 부도예측 모형을 중심으로)

  • Tai, Qiu-Yue;Shin, Kyung-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.1-14
    • /
    • 2010
  • The back-propagation neural network (BPN) has long been successfully applied in bankruptcy prediction problems. Despite its wide application, some major issues must be considered before its use, such as the network topology, learning parameters and normalization methods for the input and output vectors. Previous studies on bankruptcy prediction with BPN have shown that many researchers are interested in how to optimize the network topology and learning parameters to improve the prediction performance. In many cases, however, the benefits of data normalization are often overlooked. In this study, a genetic algorithm (GA)-based normalization transform, which is defined as a linearly weighted combination of several different normalization transforms, will be proposed. GA is used to extract the optimal weight for the generalization. From the results of an experiment, the proposed method was evaluated and compared with other methods to demonstrate the advantage of the proposed method.