• Title/Summary/Keyword: 지구자기장(Earth's magnetic field)

Search Result 30, Processing Time 0.023 seconds

Relationship between Magnetic Torquer Arrangement and Reaction Wheel Momentum Dumping Performance (자기토커 배치와 반작용휠 모멘텀 덤핑 성능 관계)

  • Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.760-766
    • /
    • 2018
  • Due to external disturbances on the satellite, unwanted momentum is accumulated on reaction wheels. To remove this momentum, three magnetic torquers which are installed along the satellite's axes are used. The magnetic torquers generated torque indirectly by interactions with the earth's magnetic field. Thus, during momentum dumping, we should consider both the magnetic torquer and the earth's magnetic field generated on the magnetic torquers at the same time. When low earth orbit satellite with high inclination angle holds nadir pointing attitude, weak earth's magnetic field is generated along the satellite's pitch axis. In this case, one magnetic torquer is overloaded and momentum dumping performance is degraded. This research will review the method to improve the momentum dumping performance by adjusting magnetic torquers arrangement.

Analysis of Geomagnetic Field measured from KOMPSAT-1 Three-Axis Magnetometer (다목적위성 삼축자력계로부터 관측된 지구자기장에 관한 연구)

  • 김정우;황종선;김성용;이선호;민경덕;김형래
    • Economic and Environmental Geology
    • /
    • v.37 no.4
    • /
    • pp.401-411
    • /
    • 2004
  • The Earth's total magnetic field was calculated from on board TAM(Three-Axis Magnetometer) observations of KOMPSAT-1 satellite between June 19th and 21st, 2000. The TAM's telemetry data were transformed from ECI(Earth-Centered Inertial Frame) to ECEF(Earth-Centered Earth-Fixed Frame) and then to spherical coordination. Self-induced field from the satellite bus were removed by the symmetric nature of the magnetic field. The 2-D wavenumber correlation filtering and quadrant-swapping method were applied to eliminate the dynamic components and track-line noise. To test the validity of the TAM's geomagnetic field, ${\phi}$rsted satellite's magnetic model and IGRF2000 model were used for statistical comparison. The correlation coefficients between KOMPSAT-1/${\phi}$rsted and KOMPSAT-1/IGRF2000 models are 0.97 and 0.96, respectively. The global spherical harmonic coeffi-cient was then calculated from the KOMPSAT-1 data degree and order of up to 19 and compared with those from IGRF2000, $\phi$rsted, and CHAMP models. The KOMPSAT-1 model was found to be stable to degree & order of up to 5 and it can give new information for the low frequency components of the global geomagtic field.

Development and Construction of low Magnetic Field Control System for Analysis of Magnetic Field Effect in the Deflection Yoke (브라운관의 자기장 영향 분석용 저자기장 제어 장치의 설계 및 제작)

  • Park, Po-Gyu;Kim, Young-Gyun;Shin, Suk-Woo;Choi, Hyung-Ho;Kim, Tae-Ik;Jung, Dong-Keun
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.6
    • /
    • pp.251-256
    • /
    • 2003
  • We have developed the quality analysis system for magnetic field effect of cathode-ray tube that is used a monitor, TV and medical appliance. We designed and constructed the large 3-axis square coil (2 m length) system for the generation of 3-component magnetic field using power supply, magnetometer and computer below 0.2 mT range. The coil constant is 30.31 ${\mu}$T, 29.73 ${\mu}$T and 30.51 ${\mu}$T for the X, Y and Z axis square coil respectively. The magnetic field resolution was 0.01 T. The uniformity of magnetic field was measured within 1 % in the range of 12 cm.

On an Apparatus of Visualization for Magnetic Reversal and Magnetic Stripes (자기역전 시각화 장치와 지자기띠에 대하여)

  • Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.85-88
    • /
    • 2016
  • The new rocks of the oceanic crust, like basalt, are created in the mid-oceanic ridge, and the magnetic polarities of the rocks are supposed to be oriented as following the Earth's magnetic field. An extensive magnetic survey of total field at sea level reveals mainly unusual north-south magnetic stripes parallel to the axis of the mid-oceanic ridge, especially in the Atlantic Ocean. From this stripes the Earth's magnetic field is considered as repeatedly 'flipped'(the N pole becoming the S pole, and vice versa) and many times over geological time. The discovery of stripes of alternately normal and reversed-magnetized rocks forming the ocean floor has been a key evidence for the sea-floor spreading, continental drift, and plate tectonics. This study introduces a simple apparatus to explain a possible mechanism of the magnetic reversal in the new oceanic crust, which makes a magnetic stripe adjacent to the mid-oceanic ridge. The apparatus shows a bar magnet effect of adjoined stripes to have a special magnetic polarity on the rocks in the center of the mid-oceanic ridge. The new magnetic stripe seems to be generated not only by Earth's magnetic field, but also by neighbored stripes in the mid-oceanic ridge, acting as a bar magnet.

studies of regarding the implementation of Directional recognition system (방향 인식 시스템 구현에 관한 연구)

  • Kim, Ki-Ryang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2087-2092
    • /
    • 2011
  • In this paper, we use the earth's magnetic field is measured by the MR device. By analyzing the measured data to determine the direction to implement the system. The construction of the system to determine the direction of neural networks, using input data based on an analysis of the relationship between pattern formation and characteristics of study and related information through a pattern when it is remembered that the output feedback input to associative networks and proves its feasibility for implementation. The entire detection system with regional changes in the Earth's magnetic field to adapt to the environment should aim to build a system.

A Study on the Earth's Variation Prediction Using Geomagnetic Model (지구자기 모델을 이용한 편차 추정에 관한 연구)

  • Saha, Rampadha;Yim, Jeong-Bin
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.131-135
    • /
    • 2006
  • The objective of the project is to model and study the geomagnetic field structure and its secular variation in space and in time due to sources in the dynamic fluid outer core. the Earth's spherical harmonic model of the main field and of the secular variation gives the intensity and geomagnetic structure at any location around the Earth, assuming an undistorted, steady state field that no external sources or localized earth anomalies. To consider the practical use of a ship's digital compass in Earth's magnetic field, Earth's spherical harmonic model is searched for the related practical methods and procedures as a basic study in this work.

  • PDF

A Localized Secular Variation Model of the Geomagnetic Field Over Northeast Asia Region between 1997 to 2011 (지역화된 동북아시아지역의 지구자기장 영년변화 모델: 1997-2011)

  • Kim, Hyung Rae
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.51-63
    • /
    • 2015
  • I produced a secular variation model of geomagnetic field by using the magnetic component data from four geomagnetic observatories located in Northeast Asia during the years between 1997 and 2011. The Earth's magnetic field varies with time and location due to the dynamics of fluid outer core and the magnetic observatories on the surface measure in time series. To adequately represent the magnetic field or secular variations of the Earth, a spatio-temporal model is required. In making a global model, satellite observations as well as limited observatory data are necessary to cover the regions and time intervals. However, you need a considerable work and time to process a huge amount of the dataset with complicated signal separation procedures. When you update the model, the same amount of chores is demanded. Besides, the global model might be affected by the measurement errors of each observatory that are biased and the processing errors in satellite data so that the accuracy of the model would be degraded. In this study, as considered these problems, I introduced a localized method in modeling secular variation of the Earth's magnetic field over Northeast Asia region. Secular variation data from three Japanese observatories and one Chinese observatory that are all in the INTERMAGNET are implemented in the model valid between 1997 to 2011 with the interval of 6 months. With the resulting model, I compared with the global model called CHAOS-4, which includes the main, secular variation and secular acceleration models between 1997 to 2013 by using the three satellites' databases and INTERMAGNET observatory data. Also, the geomagnetic 'jerk' which is known as a sudden change in the time derivatives of the main field of the Earth, was discussed from the localized secular acceleration coefficients derived from spline models.

A Study on the Earth's Variation Model to Adopt Ship's Digital Compass (선박용 디지털 컴퍼스에 적용하기 위한 지구편차 모형 개발)

  • Saha Rampadha;Yim Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.87-90
    • /
    • 2006
  • The Earth's spherical harmonic model of the main field and of the secular variation, of the geomagnetic field gives the intensity and geomagnetic structure at any location around the earth, assuming an undistorted, steady state field that no external sources or localized earth anamalies. To consider the practical use of a ship's digital compass in earth's magnetic field, Earth's spherical harmonic model is searched for the related practical methods and procedures as a basic study in this work.

  • PDF

A Study on the Correction Method for Deviations and Variations of Digital Magnetic Compass (디지털 자기 컴퍼스의 자차와 편차 수정에 관한 연구)

  • Yim, Jeong-Bin;Saha, Rampadha
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.137-141
    • /
    • 2006
  • To consider the practical use of a ship's Digital Compass in earth's magnetic field high accurate Deviation and 얘 nation are required to obtain ship's true bearing. Variation can be obtain with World Magnetic Model (WMM) using the Earth's spherical harmonic model of the main field and of the secular variation at any location around the earth. Deviation can be obtain with deviation analysis and synthesis method based on the Poisson equations. As results of deviation and variation corrections to the Digital Compass, high accurate true bearing is obtained. This experiments are carried out during in the navigation of training ship 'SAE-NU-RI'.

  • PDF