• Title/Summary/Keyword: 지구온난화가스 배출량평가

Search Result 41, Processing Time 0.025 seconds

Estimation of non-CO2 Greenhouse Gases Emissions from Biomass Burning in the Samcheok Large-Fire Area Using Landsat TM Imagery (Landsat TM 영상자료를 활용한 삼척 대형산불 피해지의 비이산화탄소 온실가스 배출량 추정)

  • Won, Myoung-Soo;Koo, Kyo-Sang;Lee, Myung-Bo;Son, Yeong-Mo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • This study was performed to estimate non-$CO_2$ greenhouse gases (i.e., GHGs) emission from biomass burning at a local scale. Estimation of non-$CO_2$ GHGs emission was conducted using Landsat TM satellite imagery in order to assess the damage degree in burnt area and its effect on non-$CO_2$ GHGs emission. This approach of estimation was based on the protocol of the 2003 IPCC Guidelines. In this study, we used one of the most severe fire cases occurred Samcheock in April, 2004. Landsat TM satellite imageries of pre- and post-fire were used 1) to calculate delta normalized burn ratio (dNBR) for analyzing burnt area and burn severity of the Samcheok large-fire and 2) to quantify non-$CO_2$ GHGs emission from different size of the burnt area and the damage degree. The analysis of dNBR of the Samcheok large-fire indicated that the total burnt area was 16,200ha and the size of the burnt area differed with the burn severity: out of the total burnt area, the burn severities of Low (dNBR < 152), Moderate (dNBR = 153-190), and High (dNBR = 191-255) were 35%, 33%, and 32%, respectively. It was estimated that the burnt areas of coniferous forest, deciduous forest, and mixed forest were about 11,506ha (77%), 453ha (3%), and 2,978ha (20%), respectively. The magnitude of non-$CO_2$ GHGs emissions from the Samcheok large-fire differed significantly, showing 93% of CO (44.100Gg), 6.4% of CH4 (3.053Gg), 0.5% of $NO_x$ (0.238Gg), and 0.1% of $N_2O$ (0.038Gg). Although there were little changes in the total burnt area by the burn severity, there were differences in the emission of non-$CO_2$ GHGs with the degree of the burn severity. The maximum emission of non-$CO_2$ GHGs occurred in moderate burn severity, indicating 47% of the total emission.

Review of Long-term Climate Change Research Facilities for Forests (기후변화 대응 산림의 장기 기후변화 연구시설)

  • Seo, Dong-Jin;Kim, Hyun-chul;Lee, Hyun Seok;Lee, Solji;Lee, Wi-Yeong;Han, Sim-Hee;Kang, Jun Won
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.274-286
    • /
    • 2016
  • Carbon dioxide ($CO_2$) accounts for about 72% of the total greenhouse gas emissions. It is also widely known as a major cause of global warming. According to the IPCC's fifth evaluation report, the growth rate of atmospheric $CO_2$ has increased by 35% for the last 100 years and global warming is occurring much more rapidly than expected since 1990s. As a result of climate change, global warming is increasing the frequency and severity of extreme weather events around the world, which has changed forest vegetation zone and vegetation phenology. The Kyoto Protocol recognizes the importance of forests and refers to the conservation and enhancement of forests as sinks and reservoirs of greenhouse gases. In this regard, studies of tree responses to climate change are indispensable for predicting changes in the forest ecosystems in the future. Therefore, studies using long-term climate change research facilities, associated with long-term ecological research (LTER) in the fields, will make a considerable contribution to predict and approach the changes in the future.

Life Cycle Assessment of Carbon Monoxide Production via Electrochemical CO2 Reduction: Analysis of Greenhouse Gas Reduction Potential (전기화학적 이산화탄소 환원을 통한 일산화탄소 생산 공정의 전과정평가 : 온실가스 저감 잠재량 분석)

  • Roh, Kosan
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • Electrochemical carbon dioxide (CO2) reduction technology, one of the promising solutions for climate change, can convert CO2, a representative greenhouse gas (GHG), into valuable base chemicals using electric energy. In particular, carbon monoxide (CO), among various candidate products, is attracting much attention from both academia and industry because of its high Faraday efficiency, promising economic feasibility, and relatively large market size. Although numerous previous studies have recently analyzed the GHG reduction potential of this technology, the assumptions made and inventory data used are neither consistent nor transparent. In this study, a comparative life cycle assessment was carried out to analyze the potential for reducing GHG emissions in the electrochemical CO production process in a more transparent way. By defining three different system boundaries, the global warming impact was compared with that of a fossil fuel-based CO production process. The results confirmed that the emission factor of electric energy supplied to CO2-electrolyzers should be much lower than that of the current national power generation sector in order to mitigate GHG emissions by replacing conventional CO production with electrochemical CO production. Also, it is important to disclose transparently inventory data of the conventional CO production process for a more reliable analysis of GHG reduction potential.

A study on 750kW Wind farm at Taean Costal National Park using WindPRO (WindPRO를 이용한 태안해안국립공원의 750kW 풍력발전단지 조성에 관한 연구)

  • Jeong, Yunmi;Kim, Jaekwang;Kim, Youngdal
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.181.2-181.2
    • /
    • 2010
  • 탄소함유 에너지원의 고갈과 가격상승, 이들 에너지 사용에 수반되는 지구 온난화 문제들로 세계는 새로운 에너지원을 도입하고자 노력하고 있다. 그 중 풍력에너지는 자원이 풍부하고 끊임없이 재생되며 광범위한 지역에 분포되어 있고, 운전 중에 온실가스의 배출이 없다는 점에서 가장 경제성이 있고 유용한 에너지원으로 인식되고 있다. 풍력발전기는 선진 국가에서부터 꾸준히 성장해 왔으며, 그 성능을 개선시키기 위하여 많은 연구가 진행되고 있다. 풍력발전기를 설치하여 발전단지를 조성함에 있어서 발전량을 예측하기 위해서 발전기가 세워질 모든 지점에 허브높이의 실측타워를 세워 풍황데이터를 측정하여야 하지만 이런 방법은 재정적인 부담이 매우 크다. 따라서 본 논문에서는 서산기상대에서 측정된 기상데이터를 이용하여 태안해안국립공원내 만리포해수욕장 지역의 풍황 및 발전량을 예측하였다. 이 때 풍황 및 발전량 예측은 풍력단지 설계를 목적으로 사용되고 있는 WindPRO Basic과 WAsP-Interface 모듈을 이용하였다. 이렇게 예측된 풍황을 이용하여 발전단지를 조성하고, PARK 모듈을 사용하여 발전단지의 에너지를 계산하였으며, WindBANK 모듈을 이용하여 단지의 경제성을 평가하였다.

  • PDF

Measurement of R-134a Leakage from Vehicle Equipped Mobile Air Conditioning(MAC) System (실차를 이용한 자동차 에어컨 냉매 누출량 평가)

  • Kim, Ji Young;Seo, Chungyoul;Lee, Sangeun;Kim, Jeongsoo
    • Journal of Climate Change Research
    • /
    • v.3 no.2
    • /
    • pp.153-159
    • /
    • 2012
  • CFC-12 used in mobile air conditioning(MAC) system has been replaced by R-134a, a type of HFC refrigerant, from 1991 to 1994. R-134a has since been widely used as a refrigerant of a mobile air conditioner. However, it is one of the six main green house gases listed in Kyoto Protocol, which makes it imperative to regulate its emission and develop alternative refrigerants. In this study, the concentration of leaked R-134a was measured using VT(Variable Temperature) shed and Running loss test shed to analyze the level of air conditioner refrigerant leaked in a vehicle. According to the analysis of the concentration of R-134a leaked from a vehicle parked, annual leakage amount of R-134a was in the range of 6.46~13.28 g/yr. The figure was similar with the leakage from the mobile air conditioning system currently used. In a study using the same vehicle model, a vehicle equipped with dual evaporation system had a higher leakage rate of refrigerant than a vehicle with a single evaporation system. It appears that the added fittings and joints of the dual evaporator system led to higher leakage rate. Besides, the analysis of the change in R-134a concentration under various car speed found that more refrigerant leaked under high speed(100km/hr) and but the volume of the wind did not affect to the variation of refrigerant leakage.

Life Cycle Assessment on Pump and Treatment Remediation of Contaminated Groundwater (오염 지하수 양수 및 처리 공정에 대한 전과정평가)

  • Cho, Jong-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.405-412
    • /
    • 2011
  • Environmental impact by proposed pump and treatment remediation of groundwater contaminated with TCE over 0.6 mg/L down to 0.005 mg/L was assessed for 30 years operation in an industrial park. Total amount of groundwater treated was $2.96{\times}10^7m^3$ and the amount of TCE removed was 17.6 kg at most. The life cycle assessment was used to estimate the environmental cost and environmental benefit and their effects on the environment could be analyzed. Most of the environmental cost was accrued from electricity generation for 30 years pump operation, which includes energy consumption, resources consumption such as coal, crude oil, emission of global warming gas and acid gas into air, waste water production, and waste generation. Environmental impact could be quantified with a Life Cycle Assessment (LCA) model for soil and groundwater remediation and normalized based upon consumption and emission quantities per capita in the world. Among the normalized values, acidification material release was the most significant.

Estimation of Carbon Emission and Application of LCA (Life Cycle Assessment) from Rice (Oryza sativa L.) Production System (쌀의 생산과정에서 발생하는 탄소배출량 산정을 위한 전과정평가 적용)

  • So, Kyu-Ho;Park, Jung-Ah;Lee, Gil-Zae;Shim, Kyo-Moon;Ryu, Jong-Hee;Roh, Kee-An
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.716-721
    • /
    • 2010
  • LCA (Life Cycle Assessment) carried out to estimate carbon footprint and to establish of LCI (Life Cycle Inventory) database of rice production system. The results of collecting data for establishing LCI D/B showed that organic fertilizer and chemical fertilizer input to 4.29E-01 kg $kg^{-1}$ rice and 2.30E-01 kg $kg^{-1}$ rice for rice cultivation. It was the highest value among input for rice cultivation. And direct field emission was 3.23E-02 kg $kg^{-1}$ during rice cropping. The results of LCI analysis focussed on greenhouse gas (GHG) was showed that carbon footprint was 8.70E-01 kg $CO_2$-eq. $kg^{-1}$ rice. Especially for 80% of $CO_2$ in the GHG and 7.02E-01 kg of its $CO_2$-eq. $kg^{-1}$ rice. Of the GHG emission $CH_4$, and $N_2O$ were estimated to be 13% and 5%, respectively. With LCIA (Life Cycle Impact Assessment) for rice cultivation system, it was observed that fertilizer process might be contributed to approximately 80% of GWP (global warming potential).

The Effects of Eco-friendly Design of Dishwashing Detergent on Product's Carbon Emission Reduction (친환경 설계로 제조된 주방세제의 탄소배출량 감축 효과)

  • Kim, Jong Seok;Kim, Won Chan;Lee, Yong Ju;Kim, Heung Sik;Park, Heon Young;Yang, Bong Sig;Kim, Wan Soo;Park, Pil Ju;Hong, Eun Ah
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.87-91
    • /
    • 2015
  • As negative effects of climate change have been visualized and its direct damages to economy have been realized, the global efforts to respond to climate change by reducing greenhouse gas emission were accelerated. Korea's Carbon Footprint Labeling gets a lot of attention as one of the effective methods to contribute to national GHG reduction goal, and for enterprises to show customers how much effort the company put into global warming prevention. Consumers' interest on low-carbon products has been increasing. This study uses Life Cycle Assessment method to calculate the amount of carbon emission of dishwashing detergent, LG Household & Healthcare, which reduced carbon emissions by using raw materials that has relatively lower environment load. Life Cycle Assessment Method is based on guidelines of Carbon Footprint Labeling, Ministry of Environment, and pre-manufacturing, manufacturing, and disposal phase are included while use phase of the product is excluded from assessment. In order to understand the effects of eco-design on carbon emissions, the dishwashing detergent's carbon emissions are compared before and after the change of main raw materials. The result shows the improvement from $0.47kgCO_2eq/kg$ to $0.38kgCO_2eq/kg$ per product, and this means the main raw materials' carbon emissions could be reduced by around 9.4%, which is equivalent to 916tons of GHG emissions per year.

A Case Study to Estimate the Greenhouse-Gas Mitigation Potential on Conventional Rice Production System

  • Ryu, Jong-Hee;Lee, Jong-Sik;Kim, Kye-Hoon;Kim, Gun-Yeob;Choi, Eun-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.502-509
    • /
    • 2013
  • To estimate greenhouse gas (GHG) emission, we established inventory of conventional rice cultivation from farmers in Gunsan and Iksan, Jeonbuk province in 2011~2012. This study was to calculate carbon footprint and to analyse the major factor of GHGs. We carried out a sensitivity analysis using the analyzed main factors of GHGs and estimated the mitigation potential of GHGs. Also we tried to suggest agricultural methods to reduce GHGs that farmers of this case study can apply. Carbon footprint of rice production unit of 1 kg was 2.21 kg $CO_2.-eq.kg^{-1}$. Although amount of $CO_2$ emissions is largest among GHGs, methane had the highest contribution of carbon footprint on rice production system after methane was converted to carbon dioxide equivalent ($CO_2$-eq.) multiplied by the global warming potential (GWP). Source of $CO_2$ in the cultivation of rice farming is incomplete combustion of fossil fuels used by agricultural machinery. Most of the $CH_4$ emitted during rice cultivation and major factor of $CH_4$ emission is flooded paddy field in anaerobic condition. Most of the $N_2O$ emitted from rice cultivation process and major sources of $N_2O$ emission is application of fertilizer such as compound fertilizer, urea, orgainc fertilizer, etc. As a result of sensitivity analysis due to the variation in energy consumption, diesel had the highest sensitivity among the energies inputs. If diesel consumption is reduced by 10%, it could be estimated that $CO_2$ potential reduction is about 2.5%. When application rate of compound fertilizer reduces by 10%, the potential reduction is calculated to be approximately 1% for $CO_2$ and approximately 1.8% for $N_2O$. When drainage duration is decreased until 10 days, methane emissions is reduced by approximately 4.5%. That is to say drainage days, tillage, and reducing diesel consumption were the main sources having the largest effect of GHG reduction due to changing amount of inputs. Accordingly, proposed methods to decrease GHG emissions were no-tillage, midsummer drainage, etc.

State-of-the-art of Life Cycle Assessment for Biodiesel Production from Plant Biomass (식물성 바이오매스로부터 바이오디젤 생산에 대한 LCA 연구 현황)

  • Seo, Bong-Kuk;Song, Seung-Koo
    • KSBB Journal
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Biodiesel is a type of biofuel obtained from bioresources and able to use in diesel vehicles as an alternative/additive to petro diesel. In recent biodiesel research, there are three main issues which include high quality biodiesel, low cost feed stock and a highly efficient biodiesel production process. The sustainable production and use of biodiesel are attracting much attention in the renewable energy field. In this paper, we review some of the literatures related to environmental and economic evaluation for biodiesel production and analysis the issues including life cycle assessment (LCA), global warming potential (GWP), energy consumption, biodiesel production cost, production technologies and feedstock.