• Title/Summary/Keyword: 지각-맨틀 경계

Search Result 24, Processing Time 0.016 seconds

Sr, Nd and Pb Isotopic Compositions of the Pyeongtaek-Asan Alkali Basalts: Implication to the Contrasting Compositional Boundary for the Mantle beneath Korean Peninsula (평택-아산 알칼리 현무암의 Sr, Nd 및 Pb 동위원소 조성: 한반도 아래 맨틀의 대조적인 조성 경계에 대한 의미)

  • Park, Kye-Hun;Cheong, Chang-Sik;Jeong, Youn-Joong
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.144-153
    • /
    • 2008
  • Sr, Nd, Pb isotopic compositions of the Cenozoic basaltic rocks distributed in Pyeongtaek-Asan area display significantly enriched values compared with mid-ocean ridge basalts just like other Cenozoic basalts of Korea. The isotopic compositions of most of the Cenozoic basaltic rocks of Korea including those from Pyeongtaek-Asan area can be explained as mixing between enriched mantle component with relatively low $^{206}Pb/^{204}Pb$ ratios and depleted mantle component. In contrast, Jejudo basalts can be explained as mixing between enriched mantle component with realtively higher $^{206}Pb/^{204}Pb$ ratios and depleted mantle componsnt. Combined with that very similar division of enriched mantle components is applied to the Cenozoic basalts of northeast China and southeast China, it is suggested that subcontinental lithospheric mantle of central and southern parts of Korea represents eastern extension of North China Block and South China Block respectively. The indentation model for the late Paleozoic to early Mesozoic continental collision of China contradicts to such an interpretation, because it cannot explain occurrence of subcontinental lithospheric mantle component of South China Block-affinity under the Jejudo area. Instead, it is more probable that suture zone of the two continental blocks crosses between central and southern Korea and its location is further south from the Pyeongtaek-Asan area. Such distinct location compared with Imjingal belt, supposedly collisional boundary suggested before, suggests that mantle boundary may not be coincide with crustal boundary for the continental collision.

Crustal Structure under the Taejon(TJN) Station by Receiver Function Methods

  • Yu, Hyeon-Je;Lee, Gi-Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.1
    • /
    • pp.35-46
    • /
    • 2001
  • 한반도 중부에 위치한 대전 지진관측소(TJN) 하부의 세부 지각구조를 밝혀내기 위하여 수신함수를 이용한 선형화된 역산(linearized inversion) 방법을 적용하였다. 본 방법의 비단일해(nonuniqueness)와 초기 모델 의존성의 문제를 해결하기 위해 근사 초기 속도 모델로부터 72개의 서로 다른 초기 모델을 구하여 역산을 수행한 후 결과모델들의 평균 속도 모델을 제시하는 방법을 사용하였다. 역산 결과 총 72개의 모델 중 뚜렷한 지각-맨틀 경계를 보이는 43개의 모델만이 조건에 만족하는 결과를 나타내었다. 모든 모델에서 속도 구조는 전체적으로 깊이에 따라 속도의 불연속면이나 급격한 증가없이 연속적인 변화를 하며, 모호면의 깊이는 30~32.5 km의 범위로 나타났다. 평균적인 하부 지각의 속도는 6.5 km/s, 상부 맨틀의 속도는 7.8 km/s로 뚜렷한 속도 변화를 보였다. 결과 모델 군은 중부지각(mid-crust)에서의 속도를 기준으로 약한 저속도층을 나타내는 군과 상대적으로 일정한 속도를 가지는 군으로 구분되었다. 단지 지진파형의 비교만으로 두 모델군 중 합당한 모델군의 선택은 불가능하였다. 따라서 수신 함수를 이용하여 연구 지역의 신뢰할 만한 지각 구조를 구하기 위해서는 그 지역에 대한 지질학적, 지구물리학적 추가정보와의 동반 해석이 요구된다.

  • PDF

Neogene Uplift in the Korean Peninsula Linked to Small-scaled Mantle Convection at Singking Slab Edge (소규모 맨틀 대류에 의한 한반도의 신제3기 이후 융기 운동)

  • Shin, Jae-Ryul;Sandiford, Mike
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.3
    • /
    • pp.328-346
    • /
    • 2012
  • This study provides quantitative constraints on Neogene uplift in the Korean peninsula using onshore paleo-shoreline records and seismic data. The eastern margin of Northeast Asia including Korea sits in the back-arc system behind the Western Pacific Subduction Zone, a complex trench triple junction of the Philippine Sea, Pacific, and Eurasian (Amurian) plates. An analysis of seismic data in the subduction zone shows that the pattern of uplift in the peninsula mirrors the extent of deep seismicity in subducting Pacific plate beneath. Combined with previous tomographic studies it is proposed that uplift is partly driven by asthenospheric upwelling caused by a sinking slab during the Neogene. In addition, the SHmax orientations of E-W and N-S trends in the peninsula are consistent with the prevailing in-situ stress fields in the eastern Eurasian continent generated by various plate boundary forces. The uplift in Korea during the Late Neogene is attributed, in part, to lithospheric failure relating to faulting movements, thus providing a link between dynamic effects of mantle upwelling at sinking slab edge and lithospheric responses driven by plate boundary forces.

  • PDF

Various vertical motions and mechanisms in intraplate settings (판 내부 융기 운동의 다양한 스케일과 매커니즘)

  • SHIN, Jaeryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.153-163
    • /
    • 2012
  • The Earth's surface deforms vertically in response to a variety of sources relating to lithospheric and sub-lithospheric processes, and distinguishing the continental mechanisms for vertical motions of the lithosphere remains a fundamental challenge in geosciences. A key prerequisite to the challenge is documentation of the temporal and spatial pattern of vertical motions in different tectonic settings. This study is aimed at elucidating the geodynamic factors that can contribute to vertical motions of the Earth's surface in intraplate continental settings including the Neogene uplift in the Korean peninsula based on numerous recent achievements in relevant fields. Ultimately, deciphering the interplay between the Earth's surface and the Earth's interior processes leads us to the notion of "the importance of geomorphic landscape" as a prism to view the dynamics of the Earth's inside.

Moho Discontinuity Studies Beneath the Broadband Stations Using Receiver Functions in South Korea (수신함수를 이용한 남한의 광대역 관측망 하부의 Moho 불연속면 연구)

  • Kim, So-Gu;Lee, Seong-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.139-155
    • /
    • 2001
  • We investigate the vertical velocity models beneath the newly installed broadband seismic network of KMA (Korea Meteorological Administration) by using receiver function inversion technique. The seismic phases are primarily P-to-S conversions and reverberations generated at the two highest impedance interfaces like the Moho (crust-mantle boundary) and the sediment-basement contact. We obtained the teleseismic P-wave receiver functions, which were derived from teleseismic records of Seoul (SEO), Inchon (INCN), Tejeon (TEJ) , Sosan (SOS/SES), Kangnung (KAN), Ulchin (ULC/ULJ), Taegu (TAG), Pusan (PUS), and Ullung-do (ULL) stations. For Kwangju (KWA/KWJ) and Chunchon (CHU) stations, the Moho conversion Ps arrivals and waveforms of radial receiver functions are azimuthally inconsistent and unclear. From the receiver function inversion result, we found that crustal thickness is 29 km at INCN, SEO, and SOS (SES) stations, 28 km at KAN station in the Kyonggi Massif, 32 km at TEJ station in Okchon Folded Belt, 34 km at TAG, 33 km at PUS station in the Kyongsang Basin, 32 km at KWJ station (readjusted station by prior KWA station) included in the Youngdong-Kwangju Depression Zone, 28 km at ULC station in the eastern margin of the Ryongnam Massif, and 17 km at ULL station in the Ullung Island of the East Sea, respectively. The Moho configuration of INCN, SOS, KWJ, and KAN stations show a laminated smooth transition zone with a 3-5 km thick. The upper crusts(${\sim}5km$) of KAN, ULC, and PUS stations show complex structures with a high velocity. The unusually thick crusts are found at the TAG and PUS stations in the Kyongsang Basin compared to the thin (29-32 km) crust of the western part (INCN, SEO, SOS, TEJ, and KWA stations) The crustal thickness beneath Ullung Island (ULL station) shows the suboceanic crust with about 17 km thickness and complex with a high velocity layer of the upper crust, and the amplitudes of Incoming Ps waves from the western direction are relatively large compared to those from othor directions.

  • PDF

Preliminary Tomographic hversion for the Crustal Characteristics in the Central Region of South Korea (남한 중부지역의 지각특성 구명을 위한 토모그라피 역산에 의한 예비적 연구)

  • Lee, Duk-Kee;Kyung, Jai-Bok;Chung, Tae-Woong
    • Journal of the Korean earth science society
    • /
    • v.22 no.1
    • /
    • pp.20-29
    • /
    • 2001
  • P wave traveltime delays has been measured and a preliminary tomouaphic inversion has been performed using the data collected from the network deployed by Korea National University of Education in the southcentral part Korea. The maximum variation in relative traveltime residuals is almost 0.7 seconds. A large azimuthal variation in traveltime residuals is observed at the stations in the northwestern part of the study area. This might indicate the existence of lateral velocity heterogeneity beneath the study area. Although, the inverted tomographic image seems to be correlated with the tectonic boundary between Kyunggi Massif and Okcheon Belt, the confidence level is presently low. We should place on the importance of this study for finding preferable inversion parameters and predicting probable result. Better tomographic image of the study area can be obtained in the near future when the data are accumulated.

  • PDF

Large Ground Motion Related to Crustal Structure in Korea (한반도 지각 구조로 인한 이상 강진동 관측 및 해석)

  • Kim, Kwang-Hee;Kang, Su-Young;Min, Dong-Joo;Suk, Bong-Chool;Ryoo, Yong-Gyu
    • Journal of the Korean earth science society
    • /
    • v.29 no.7
    • /
    • pp.559-566
    • /
    • 2008
  • Ground shaking recorded during the January 20, 2007, $M_L$ 4.8 Odaesan earthquake (Korea) were used to investigate the role of the crustal structure in producing a strong ground motion, which includes the identification of the phases responsible for the strong ground motion and their implications for seismic hazard assessment. Analyses of strong-motion data together with waveform simulation revealed that critical and post-critical reflections from the crust-mantle boundary are responsible for the abnormal ground motions. This result demonstrates that the crustal structure should be taken into consideration in studies of seismic hazard mitigation even in the areas of relatively low seismicity.

Review on the Triassic Post-collisional Magmatism in the Qinling Collision Belt (친링 충돌대의 트라이아스기 충돌 후 화성작용에 대한 리뷰)

  • Oh, Chang Whan;Lee, Byung Choon;Yi, Sang-Bong;Zhang, Cheng Li
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.293-309
    • /
    • 2014
  • The Qinling-Dabie-Sulu-Hongseong-Odesan collision belt was formed by the collision between the North China and South China Cratons during late Permian to Triassic. During the collision, Triassic post-collision igneous rocks regionally intruded in the Qinling and the Hongseong-Odesan collision belts which represent the western and eastern ends of the collision belt, respectively. However, no and minor Triassic post-collision igneous activities occur in the Dabie and Sulu belts respectively. The peak metamorphic pressure conditions along the Qinling-Dabie-Sulu-Hongseong-Odesan belt indicate that the slab break-off occurred at the depth of ultra-high pressure (UHP) metamorphic condition in the Dabie and Sulu belts and at the depths of high pressure (HP) or high pressure granulite (HPG) metamorphic condition in the Qinling and Hongseong-Odesan belts. In the Dabie and Sulu belts the heat supply from the asthenospheric mantle through the gab formed by slab break-off could not cause an extensive melting in the lower continental crust and lithospheric mantle directly below it due to the very deep depth of slab break-off. On the other hand, in the Qinling and Hongseong-Odesan belts, shallower slab break-off caused the emplacement of regional post collision igneous rocks. The post-collision igneous rocks occur in the area to the north of the Mianlu Suture zone in the western Qinling belt and crop out continuously eastwards into the areas to the north of the Shangdan Suture zone in the eastern Qinling belt through the areas within the South Qinling block. This distribution pattern of post collision igneous rocks suggests that the Triassic collision belt in the Mianleu Suture zone may be extended into the Shangdan Suture zone after passing through the South Qinling block instead into the boundary between the South Qinling block and the South China Craton.

Comments on Seismicity and Crustal Structure of the Korean Peninsula (한반도의 지진활동과 지각구조)

  • Lee, Kie-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.256-267
    • /
    • 2010
  • Earthquakes in the Korean Peninsula occur along the faults formed and boundaries between major geological units ruptured due to violent tectonic activities during the Mesozoic. E-W and/or ENE-SSW compressive stress regime resulting from collisions between the Eurasian plate and neighbouring the Indian plate, the Pacific plate and the Philippine plate trigger Korean earthquakes of thrust faulting with predominant strike-slip components along the mostly NNE-SSW trending active faults. Seismicity of the Korean peninsula has been moderate to low during the past 20 centuries except for the period from the 15th to the 18th centuries of exceptionally high seismicity, showing the typical irregularity of intraplate seismicity. The structure of the Korean peninsula is rather homogeneous without the Conrad discontinuity sharply dividing the upper and lower crust. Lateral heterogeneities exist in the crust. The crust with an average thickness of about 33 km is thicker in the mountainous region than the plain due to the Airy-type isostatic equilibrium maintained in the peninsula. Crustal P-wave velocity with average of about 6.3 km/sec increases gradually from the near surface to the Moho. The upper mantle P-wave (Pn) velocity is about 7.8 km/sec.

Misconceptions of the Freshmen at High School about Plate Tectonics (판구조론에 관한 고등학교 1학년 학생들의 오개념)

  • Jeong, Kyoung-Jin;Jeong, Ku-Song;Moon, Byoung-Chan;Jeong, Jin-Woo
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.762-774
    • /
    • 2007
  • The purpose of this study was to investigate misconceptions about plate tectonics which spread widely among freshmen at high school with drawing. For this, we chose 6 conceptions about plate tectonics by analysis of 7th curriculum and of 11 kinds of science textbooks. Questionnaire of drawing about plate tectonics were developed depending on them. Data was collected from 134 students who was freshmen at high school in Daegu. The result of this study was as follows. First, In structure of plate, 'upper mantle type' and 'crust type' misconceptions were more than half of the respondents. Second, In distribution of plate, 'cracked earthquake zone type' and 'earthquake frequency type' misconceptions were more than half of the respondents. Third, In formation of ocean ridge at oceanic crust- oceanic crust divergent plate boundary, 'divergence type' and 'collision type' misconceptions were more than half of the respondents. Fourth, In formation of mountain ridge at continental crust- continental crust convergent plate boundary, 'collision type' misconceptions were more than half of the respondents. Fifih, In formation of mountain ridge at oceanic crust- continental crust convergent plate boundary, 'subduction type' and 'fault type' misconceptions were more than half of the respondents. Sixth, In transform-fault at oceanic crust- oceanic crust transform-fault boundary, 'direction type' and 'section type' misconceptions were almost half of the respondents. In this study, students' drawings about plate tectonics showed similar misconceptions. This imply that drawing conceptions can be used by the strong evidence of misconceptions which spread widely among students. Furthermore, this study has a significance that this conclusion is useful to teachers as basic teaching-teaming materials of plate tectonics.