• Title/Summary/Keyword: 지각 필터

Search Result 62, Processing Time 0.02 seconds

Baleen Whale Sound Synthesis using a Modified Spectral Modeling (수정된 스펙트럴 모델링을 이용한 수염고래 소리 합성)

  • Jun, Hee-Sung;Dhar, Pranab K.;Kim, Cheol-Hong;Kim, Jong-Myon
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.69-78
    • /
    • 2010
  • Spectral modeling synthesis (SMS) has been used as a powerful tool for musical sound modeling. This technique considers a sound as a combination of a deterministic plus a stochastic component. The deterministic component is represented by the series of sinusoids that are described by amplitude, frequency, and phase functions and the stochastic component is represented by a series of magnitude spectrum envelopes that functions as a time varying filter excited by white noise. These representations make it possible for a synthesized sound to attain all the perceptual characteristics of the original sound. However, sometimes considerable phase variations occur in the deterministic component by using the conventional SMS for the complex sound such as whale sounds when the partial frequencies in successive frames differ. This is because it utilizes the calculated phase to synthesize deterministic component of the sound. As a result, it does not provide a good spectrum matching between original and synthesized spectrum in higher frequency region. To overcome this problem, we propose a modified SMS that provides good spectrum matching of original and synthesized sound by calculating complex residual spectrum in frequency domain and utilizing original phase information to synthesize the deterministic component of the sound. Analysis and simulation results for synthesizing whale sounds suggest that the proposed method is comparable to the conventional SMS in both time and frequency domain. However, the proposed method outperforms the SMS in better spectrum matching.

3D SH-wave Velocity Structure of East Asia using Love-Wave Tomography and Implication on Radial Anisotropy (러브파 토모그래피를 이용한 동아시아의 3차원 SH파 속도구조와 이방성 연구)

  • Min, Kyungmin;Chang, Sung-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • We present a 3D SH-wave velocity model of the crust and uppermost mantle and seismic radial anisotropy beneath East Asia. The SH-wave velocity structure model was built using Love-wave group-velocity dispersion data from earthquake data recorded at broadband seismic networks of Korea, Japan, and China. Love-wave group-velocity dispersion curves were obtained by using the multiple filtering technique in the period range of 3 to 150 s for 3,369 event-station pairs. The inverted model using these data sets provides a crust and upper mantle SH-wave velocity structure down to 100 km depth. At 10 ~ 40 km depths SH-wave velocity beneath the East Sea is higher than beneath the Japanese island region. We estimated the Moho beneath the East Sea to be between 10 ~ 20 km depth, while Moho beneath the Korean Peninsula at around 35 km based on the depth where high-velocity anomalies are detected. We estimated the lithosphere-asthenosphere boundary beneath the East Sea to be at around 50 km based on the depth where strong low-velocity anomalies are observed. Widespread low-velocity anomalies are found between 50 ~ 100 km depth in the study region. Positive radial anisotropy ($V_{SV}$ > $V _{SH}$) is observed down to 35 km depth, while negative radial anisotropy ($V_{SV}$ > $V _{SH}$) is observed for deeper depth.