• Title/Summary/Keyword: 지각 탐사

Search Result 132, Processing Time 0.026 seconds

IMAGING THE UPPER CRUST OF THE KOREAN PENINSULA BY SURFACE WAVE TOMOGRAPHY (표면파 토모그래피를 이용한 한반도 상부지각의 이미지)

  • Cho, Kwang-Hyun;Herrmann, Robert B.;Lee, Kie-Hwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.41-50
    • /
    • 2006
  • The crustal structure of Korean Peninsula have been investigated by analyzing group velocity dispersion data of surface wave. Cross.correlation of seismic background motions (Campillo and Paul, 2003; Shapiro et al., 2005) has been applied to estimate the short.period Rayleigh. and Love.wave group velocity dispersion characteristics of the region. Standard processing procedures were applied to the cross.correlation, except that signal whitening was used in place of one.bit sampling equalize power in signals from different times. Multiple.filter analysis was used to extract the group velocities from the estimate Green's functions, which were then use to image the spatially varying dispersion at periods between 0.5 and 20 seconds. The tomographic inversion technique used inverted all periods simultaneously to provide a smooth dispersion curve as a function of period in addition to the usual smooth spatial image for a given period. The Gyeongsang Basin in the southeastern part of the peninsula is clearly resolved with lower group velocities.

  • PDF

A Study on Noise Characteristic of Multi-channel Seismic Data for the Hydrothermal Deposit Survey at Lau Basin, South Pacific (열수광상 탐사를 위한 남태평양 라우분지 다중채널 탄성파 자료의 잡음특성 연구)

  • Ok, Soo-Jong;Ha, Young-Soo;Lee, Jin-Woo;Shin, Sung-Ryul
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.235-235
    • /
    • 2011
  • Lau basin of south Pacific, as an active back arc basin, is promising area bearing seafloor massive hydrothermal deposit that is located in a subduction zone between the Pacific ocean plate and Indo-Australian continental plate. Korea Ocean Research and Development Institute tracked from 2004 to 2006 the hydrothermal activity to the extension of the northeast Lau Basin, targeting seamount. hydrothermal activity by tracking was found hydrothermal evidences. In this study, Marine seismic survey was carried out in the Lau basin seamount of the possibility of hydrothermal deposit. In particular, Marine magnetic survey and seismic survey was carried out at the same time in TA-12 seamount and noise characteristics were found in the seamount. the main process of data processing is Bandpass filter, FK filter, Deconvolution for noise attenuation such backscatter and multiple reflections. the migration is performed to compensate for reflection points followed by seamount of a slope. In this study, bedrock and upper strata could be identified and in the Future, the comparative method with Multi Beam Echo Sounder(MBES) are likely to derive the correct velocity model, the marine magnetic survey results should be considered.

  • PDF

Digital Gravity Anomaly Map of KIGAM (한국지질자원연구원 디지털 중력 이상도)

  • Lim, Mutaek;Shin, Younghong;Park, Yeong-Sue;Rim, Hyoungrea;Ko, In Se;Park, Changseok
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • We present gravity anomaly maps based on KIGAM's gravity data measured from 2000 to 2018. Until 2016, we acquired gravity data on about 6,400 points for the purpose of regional mapping covering the whole country with data density of at least one point per $4km{\times}4km$ for reducing the time of the data acquisition. In addition, we have performed local gravity surveys for the purpose of mining development in and around the NMC Moland Mine at Jecheon in 2013 and in the Taebaeksan mineralized zone from 2015 to 2018 with data interval of several hundred meters to 2 km. Meanwhile, we carried out precise gravity explorations with data interval of about 250 m on and around epicenter areas of Gyeongju and Pohang earthquakes of relatively large magnitude which occurred in 2016 and in 2017, respectively. Thus we acquired in total about 9,600 points data as the result. We also used additional data acquired by Pusan National University for some local areas. Finally, gravity data more than 16,000 points except for the repetition and temporal control points were available to calculate free-air, Bouguer, and isostatic gravity anomalies. Therefore, the presented anomaly maps are most advanced in spatial distribution and the number of used data so far in Korea.

Analysis on the sea effect in the Korean Peninsula using 2-D MagnetoTelluric(MT) modeling (2차원 MT 모델링을 이용한 한반도에서의 해양효과 분석)

  • Yang, Jun-Mo;Kwon, Byung-Doo;Lee, Chun-Ki
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.259-264
    • /
    • 2006
  • In MT and GDS survey for probing the deep structure of the Earth, surrounding seas play a critical role to distort the response of in-land geological structure. This study analyzed the sea effect in the Korean Peninsula and investigated the spatial and frequency dependency of it using 2-D MT modeling. Due to conductance difference between the Yellow Sea and the East Sea, the effect of each sea shows the dependence on frequency and spatial distance from each coastline. In general, TM mode responses are more severely affected by surrounding sea than TE mode one and the differences between 1-D model and TM mode responses are in inverse proportion to the frequency. Assuming that the lowest limit of acquired frequency is 0.001Hz for the given 1-D structure, the separation distance, where the sea effect can be negligible, is approximately 100km for the East Sea and 40-50km for the Yellow Sea, respectively. But, this separation distance is a function of the 1-D electrical structure of subsurface and the used frequency.

  • PDF

Crustal Structure of the Korean Peninsula By Travel Time Inversion of Local Earthquakes

  • Song, Seok-Gu;Lee, Gi-Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.1
    • /
    • pp.21-33
    • /
    • 2001
  • Simultaneous inversion of first-arrivals of local earthquakes recorded by the Korea Meteorological Administration(KMA) seismograph network from 1991 to 1998 is made to derive 1D crustal velocity structure of the Korean peninsula. Twenty-nine events with 178 observations are used in the inversion. Average crustal P-wave velocity turns out to be about 6.3 km/sec, and crustal thickness and upper mantle P-wave velocity are estimated as 33 km and 7.9 km/sec, respectively. Results of inversion indicate the possibility of the low velocity layer in the lower crust. Joint inversion is applied to estimate hypocenters, station delays, and velocities simultaneously. Relative station corrections for 11 stations range from zero to about 1.2 sec. Analysis of the synthetic data shows that estimates of hypocenter locations and station corrections as well as averaged crustal structure are reliable for the given data set..

  • PDF

P-wave Velocity Anisotropy in the Upper Crust of the Southern Korean Peninsula Using Seismic Signals from Large Explosions (대규모 발파자료를 이용한 한반도 남부 상부지각의 종파 속도 이방성)

  • Hong, Myung-Ho;Kim, Ki-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.225-232
    • /
    • 2009
  • As part of seismic experiments investigating crustal velocity structures of the Korean peninsula, permanent (fixed) seismographs of the Korea Meteorological Administration (KMA) network recorded seismic signals from four and eight large explosions in Korean Crustal Research Team (KCRT) profiles shot in 2004 and 2008, respectively. Among the seismograms recorded by 43 velocity sensors and 103 accelerometers at KMA stations distributed throughout the southern Korean Peninsula, 156 records with epicentral distances less than 120 km and high signal-to-noise ratios were analyzed to determine velocity anisotropy of the Pg phase. Relative elevation corrections of -101.6 to 105.3 ms were made using velocity information derived from the 2004 KCRT profile data and differences in elevation between the permanent KMA stations and the temporary stations in the KCRT profiles at the same source-receiver offsets. To remove site effects, receiver-station corrections of -89.6 to 192.2 ms were additionally made to the KMA station data by subtracting the average differences in traveltimes between KMA stations and portable stations at the same offsets for all available shots with different azimuths. With the exception of anomalously fast velocities along trends of the Chugaryeong fault zone and the Okchon fold belt and anomalously slow velocities in the regions of high terrestrial heat near Yeongduk and Ulsan, the analysis of crustal velocity anisotropy using the Pg phase indicates overall isotropy in the southern half of the Korean peninsula.

Conceptualization of Joint Attention - Triadic relationship between Target, Cue and Attentive Response (공동주의의 개념화 - 목표물, 단서 그리고 주의반응간의 삼자관계)

  • Lee, KangWoo;Shin, Myoung-Hee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.145-147
    • /
    • 2014
  • 공동주의는 사회적 개체간의 지각적 경험을 공유하는 상호작용과정으로, 최근 인간-로봇 상호작용연구와 관련해서 로봇 공학자의 관심이 커지고 있다. 발달심리학에 기초한 기존의 developmental robotics의 접근과는 달리, 본 연구에서는 사전단서 패러다임을 이용해서 목표물, 단서, 주의반응 간의 삼자관계를 수학적으로 개념화하였다. 간단한 목표물 탐사과제를 통해서 계산모형의 수행을 검증하였다. 연구결과에서는 컴퓨터 시스템의 시각적 주의 모형이 사용자가 지시하는 단서(손가락 지시)의해 목표물(이온음료)을 주의를 할당하는 것을 보였다. 본 연구는 심리학에서 연구된 사전단서 패러다임을 인간-로봇 상호작용에 적용될 수 있음을 보여준다.

  • PDF

The Applicability of Seismic Waves to Detect a Low Velocity Body of the Geothermal Area (지열부지의 저속도층을 탐지하기 위한 지진파의 응용성)

  • 김소구
    • The Journal of Engineering Geology
    • /
    • v.4 no.3
    • /
    • pp.333-341
    • /
    • 1994
  • The low velocity body was detected during the invesfigation of the crustal structune and upper mantle in the Korean Peninsula using ray method and observational seismic data. We observed the arrival time delays of P and S waves that pass through the Bugok hot spring area and the chugaryong rift zone in the Korean Peninsula. The present geothermal exploration accounts for the high heat flow in these regions, suggesting that the area are the 'delay shadows' produced by a deep, low velocity body(Resenberg et aL, 1980). We tried to verify the hypothesis that the low-velocity body is caused by the partial melting in the lower crust can be explained by the lateral variation(inhomogeneous model) of the lower crust velocity using Ray Method(Cerveny and Psencik, 1983).

  • PDF

High-resolution Seismic Imaging of Shallow Geology Offshore of the Korean Peninsula: Offshore Uljin (신기 지구조운동의 해석을 위한 한반도 근해 천부지질의 고해상 탄성파 탐사: 울진 주변해역)

  • Kim, Han-Joon;Jou, Hyeong-Tae;Yoo, Hai-Soo;Kim, Kwang-Hee;You, Lee-Sun
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.127-132
    • /
    • 2011
  • We acquired and interpreted more than 650 km of high-resolution seismic reflection profiles in the Hupo Basin, offshore east coast of Korea at $37^{\circ}N$ in the East Sea (Japan Sea) to image shallow and basement deformation. The seismic profiles reveal that the main depocenter of the Hupo Basin in the study area is bounded by the large offset Hupo Fault on the east and an antithetic fault on the west; however, the antithetic fault is much smaller both in horizontal extension and in vertical displacement than the Hupo Fault. Sediment infill in the Hupo Basin consists of syn-rift (late Oligocene. early Miocene) and post-rift (middle Miocene.Holocene) units. The Hupo Fault and other faults newly defined in the Hupo Basin strike dominantly north and show a sense of normal displacement. Considering that the East Sea has been subjected to compression since the middle Miocene, we interpret that these normal faults were created during continental rifting in late Oligocene to early Miocene times. We suggest that the current ENE direction of maximum principal compressive stress observed in and around the Korean peninsula associated with the motion of the Amurian Plate induces the faults in the Hupo Basin to have reverse and right-lateral, strike-slip motion, when reactivated. A recent earthquake positioned on the Hupo Fault indicates that in the study area and possibly further in the eastern Korean margin, earthquakes would occur on the faults created during continental rifting in the Tertiary.

A new method for determining OBS positions for crustal structure studies, using airgun shots and precise bathymetric data (지각구조 연구에서 에어건 발파와 정밀 수심 자료를 이용한 OBS 위치 결정의 새로운 방법)

  • Oshida, Atsushi;Kubota, Ryuji;Nishiyama, Eiichiro;Ando, Jun;Kasahara, Junzo;Nishizawa, Azusa;Kaneda, Kentaro
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.15-25
    • /
    • 2008
  • Ocean-bottom seismometer (OBS) positions are one of the key parameters in an OBS-airgun seismic survey for crustal structure study. To improve the quality of these parameters, we have developed a new method of determining OBS positions, using airgun shot data and bathymetric data in addition to available distance measurements by acoustic transponders. The traveltimes of direct water waves emitted by airgun shots and recorded by OBSs are used as important information for determining OBS locations, in cases where there are few acoustic transponder data (<3 sites). The new method consists of two steps. A global search is performed as the first step, to find nodes of the bathymetric grid that are the closest to explaining the observed direct water-wave traveltimes from airgun shots, and acoustic ranging using a transponder system. The use of precise 2D bathymetric data is most important if the bottom topography near the OBS is extremely rough. The locations of the nodes obtained by the first step are used as initial values for the second step, to avoid falling into local convergence minima. In the second step, a non-linear inverse method is executed. If the OBS internal clock shows large drift, a secondary correction for the OBS internal clock is obtained, as well as the OBS location, as final results by this method. We discuss the error and the influence of each measurement used in the determination of OBS location.