• Title/Summary/Keyword: 지각기원물질

Search Result 49, Processing Time 0.023 seconds

Concentration of Radioactive Materials for the Phanerozoic Plutonic Rocks in Korea and Its Implication (국내 현생 심성암류의 방사성 물질의 농도 및 의미)

  • Kim, Sung Won
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.565-583
    • /
    • 2020
  • In recent years, various social issues related to the natural radioactive elements detected in household goods and building materials are addressed, and should be solved promptly. In Korea, for more than 20 years, the Ministry of Environment has investigated the natural radioactive materials such as heavy metals, uranium, and radon in soil or groundwater. The origins of natural radioactive materials in them may have a close correlation with the geological factors including classification of rocks, petrogenetic origins, and deformation characteristics, but the exact geological correlations are not clarified because of the absence of the government policy preserved in the basement rocks, soils as well as groundwater in fault-related reservoirs. This study aims to perform a research on the correlation between the petrogeneses of the Phanerozoic plutonic rocks and natural radioactive concentrations in rocks (radon, uranium, thorium, potassium etc.) in Korea. Among the Phanerozoic plutonic rocks, alkaline plutonic rocks (syenite, monzonite and monzodiorite and alkali granite) show high U and Th concentrations by high solubilities of U, Th, Zr, REE, and Nb until the most extreme stages of magmatic fractionation (viz. crystal fractionation) due to high magma temperature and high alkalinity tendency. The highly fractionated high-K calalkaline and peraluminous granitic rocks (leucogranite, two-mica granite and leucocratic pegmatite are also U and Th concentrations compared with other less or medium fractionated granitic rocks (diorite, granodiorite and granite). The alkaline plutonic rocks are associated with intracontinental rifting and extensional environment after crustal thickening by collisional and subductional processes. In contrast, the dominant calc-alkaline granitic rocks in Korea are related to the arc environment of the subduction zone. In summary, the trends of the U, Th and K concentration from the Phanerozoic plutonic rocks in Korea are closely linked to the petrogenesis of the rocks in tectonic environment. The preliminary data for gamma-spectrometric mesurments of natural radionuclide contents (226Ra, 232Th and 40K) in the Phanerozoic plutonic rocks show high values in the alkaline and highly fractionated granitic rocks.

Magmatism and Metamorphism of the Proterozoic in the Northeastern Part of Korea : Petrogenetic and Geochemical Characteristics of the Okbang Amphibolites (한국(韓國) 북동부지역(北東部地域) 원생대(原生代)의 화성활동(火成活動)과 변성작용(變成作用) : 옥방(玉房) 앰피볼라이트의 암석성인(岩石成因)과 지구화학적(地球化學的) 특징(特徵))

  • Chang, Ho-Wan;Lee, Dong-Hwa;Park, Kye-Hun
    • Economic and Environmental Geology
    • /
    • v.26 no.4
    • /
    • pp.489-498
    • /
    • 1993
  • The Okbang amphibolites occurring as sill-shaped bodies within the Precambrian Wonnam Group have been studied in terms of geochemical characteristics for their tectonomagmatic environments. The amphibolites fall in the ortho-amphibolite fields in Ni and Cr versus Cu diagrams. They belong to subalkaline and tholeiitic series in total alkali versus silica and ternary AFM diagrams, respectively. They show the compositional variation corresponding to the differentiation trend of tholeiitic suites. In discrimination diagrams using high-field-strength elements such as Ti, Zr, Nb and Y, the amphibolites show geochemical affinities to both of volcanic-arc tholeiites and normal (depleted) mid-oceanic ridge tholeiites. The REE patterns of the amphibolites are nearly flat and extremely similar to those of back-arc tholeiites. $(La/Yb)_{CN}$ ratios vary from 0.89 to 2.02 with an average value of 1.23. Such low light-REE abundances in the amphibolites suggest that they were derived from the upper mantle source depleted in these elements. In view of geochemical characteristics showing strong enrichments of incompatible elements such as K and Rb, distinctive negative Nb anomalies, depletions of light-REE observed also in normal (depleted) mid-oceanic ridge tholeiites, and unfractionated immobile elements such as Y and Yb, the tholeiitic magmas, from which the parent rocks of the amphibolites were formed, would be generated from a depleted upper mantle source and contaminated by continental crustal materials en route to surface. Tectonomagmatic environment for the amphibolites can be assumed to be continental back-arc basin.

  • PDF

전북 남원 일대의 야외지질 학습자료 개발

  • Jo, Gyu-Seong;Jeong, Deok-Ho;Park, Gyeong-Jin;Jang, Hyeon-Geun
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.66-66
    • /
    • 2010
  • 야외지질학습은 교실에서 경험할 수 없는 물질과 현상을 관찰하고 직접 경험할 수 있는 기회를 제공받을 수 있어서 매우 중요하다(Orion 1989). 또한 체험활동으로서 교실에서 학습한 내용의 구체적인 예를 제공하여 교육과정을 촉진시키는데 중요한 요소로 인식되고 있다. 일반적으로 야외 활동은 교실 활동보다 학생들의 경험과 훨씬 더 밀접히 관련되어 있기 때문에 보다 의미가 있을 수 있다. 야외실습 중에서 얻은 경험은 학생들이 그가 관찰한 것에 대해 읽도록 동기화시키고, 교과서와 자연조건에서의 실제적 경험 사이의 차이를 연결해 주는 다리를 제공해 줄 수 있다(홍정수, 장남기, 1997). 야외학습을 위한 적절한 장소는 먼저 학습주제나 목표와 부합되는 곳이어야 하며, 지리적으로 가깝고 안전한 곳이어야 한다(김찬종, 2008). 그렇기 때문에 각 지역별로 학습주제와 부합된 지역을 선정하여 야외지질 학습자료를 개발하는 것은 무엇보다 중요하다. 따라서, 본 연구에서는 전북 남원 일대를 중심으로 한 야외지질 학습자료를 개발하는데 그 목적이 있다. 전북 남원지역은 한반도의 중요지괴에 해당하는 영남육괴 지리산지구에 해당하며 편마암 복합체를 기저로 이를 관입하는 수 차례의 화성활동과 지구조운동으로 복잡한 지질양상을 보인다. 또한 지리산 지역은 평안분지와 경상분지의 일부가 보존되어 있고 지질시대를 달리하는 각종 화성암류가 골고루 분포하여 각 지질시대별로 화성활동과 지구조 운동이 활발했음을 시사해준다. 본 연구에서는 남원 지역의 지질학적 특징을 관찰하기 용이한 지역을 대상으로 총 5곳을 선정하였다. 남원 시내에 소재한 춘향대교 아래 지역은 중생대 쥐라기에 관입한 저반상의 남원화강암과 페그마타이트가 다수 분포하는 곳이다. 이 지역에서는 무수히 많은 관입암체를 찾을 수 있는데 다수의 지진과 지각변동이 있었음을 알 수 있다. 두 번째 장소는 다양한 바위들을 관찰할 수 있는 구룡계곡 일대이다. 이 장소는 오랜기간 동안 물의 흐름에 의해 풍화와 침식을 받은 다양한 크기의 바위를 관찰하고 구별함으로써 풍화에 따른 원마도의 관계, 바위들의 배치 형태를 통해 고지형 및 고수류의 방향을 유추해 볼 수 있다. 남원에서 장수 방향에 위치한 만행산 주변에는 흑운모편마암에 우세한데, 이 지역에서는 흑운모편마암에 나타나는 변성구조로 볼 때 높은 열과 압력을 받은 광역변성작용을 받는 것으로 판단된다. 또한 관입암체 내에 다양한 맥들이 관입을 해와 이를 통해 관입암체들의 상대연령을 판단해보는 학습자료로 활용될 수 있다. 네 번째 장소는 남원시 인월면 인풍리 소재의 인월 피바위 지역이다. 이 지역에서는 압쇄상 화강암이 주로 관찰되는데 이는 기원암인 반상화강암이 동력변성작용을 받아 생성된 것이다. 다섯 번째 지역은 지리산 내의 뱀사골로 지리산 인근에 분포하는 대표적인 편마암인 반상변정질 편마암을 관찰할 수 있다. 변정이란 변성작용을 받는 동안 형성되는 것으로 변성작용을 받는 동안 생긴 것도 있으나 경우에 따라 생성당시 원래 모암속에 포함되어 있는 반정들도 있다.

  • PDF

Petrochemistry and magma process of Jurassic Boeun granodiorite in the central Ogcheon belt (중부 옥천대에 분포하는 쥬라기 보은 화강섬록암의 암석화학과 마그마과정)

  • 좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.188-199
    • /
    • 1996
  • Boeun granodiorite, which intruded into the metasedimentary rocks of the Ogcheon Group, show chemical natures of metaluminous and calc-alkaline. Generating and emplacing environment of the Boeun granodiorite would have been a active continental margin. Comparing to the contemporaneous Inje-Hongcheon granodiorite in the Gyeonggi massif, the Boeun granodiorite seems likely to have formed under more immature continental arc environment. Compositional changes of major, trace and rare earth elements in granodiorite and felsic dyke are not certain to indicate crystallization differentiation. From this fact, the simple fractional crystallization model would be in question to explain the magma process which controlled the formation of the Boeun granitic mass. The model calculations for Rayleigh fractionation, fractionation with variable major-component composition, assimilation-fractional crystallization (AFC) were carried out to examine the magma process of the mass. The results of former two models do not agree with the compositional variations in the mass. The AFC model can be, however, applied to the magma process. The conditions for AFC process are (1) composition of assimilated wallrock is similar to that of primary magma. (2) assimilating rate is similar to crystallizing rate, and (3) mass of assimilated wallrock is about 10% of that of the magma. These conditions deny a possibility that the assimilated wallrock was the metasedimentary rocks of the Ogcheon Group. This indicates that after having experienced the assimilation process in deeper crust, the granodiorite magma intruded into the Ogcheon group. Every model calculating suggests that the felsic dyke was differentiated not from the granodiorite magma, but from a different source magma.

  • PDF

Ball-milling Induced Changes in the Crystallinity of Quartz and Wear of Milling Media (볼 밀링에 의한 석영의 결정도 변화와 밀링 매체의 마모의 영향)

  • Jin Jung Kweon;Hoon Khim;Sung Keun Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.95-106
    • /
    • 2023
  • Quartz (SiO2) is among the major rock-forming minerals in the earth's crust. The atomistic structures of SiO2 may evolve during diverse frictional processes. The reduction of friction of quartz-rock accompanied by its amorphization, hydration, and formation of silica gel provides mineralogical insights into earthquakes and related phenomena. Ball milling, together with rotary shear experiments have been useful to infer the atomic origins of such processes. In this study, optimal experimental conditions for ball milling for amorphization of SiO2 were determined by taking into account various process variables. The crystallinity of SiO2 gradually decreased and became amorphous as the ball milling time increased at a high milling speed. The degree of wear of the milling media and its effect on the amorphization of SiO2 were analyzed using distinct milling materials (zirconia, stainless steel). The amount of ball wear increased with increasing milling time. Furthermore, the worn stainless steel particles from balls tend to interact with amorphized SiO2 to form Si-O-Cr. These results aid in understanding the process of atomistic structural changes caused by ball milling of divserse materials with relatively high hardness, such as SiO2, and understanding various geological friction processes.

Geochemical and Structural Geological Approach for clarifying Stratigraphy of Quartzite in the Paju Area: an Application of Rare Earth Element and Nd Isotope in Stratigraphy (파주지역 규암의 층서관계 규명을 위한 지구화학적-구조지질학적 연구: 층서규명을 위한 희토류원소 분포도와 Nd 동위원소의 응용)

  • Koh Hee Jae;Lee Seung-Gu;Lee Byung-Joo
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.2 s.40
    • /
    • pp.116-126
    • /
    • 2005
  • The Precambrian quartzite and calc-schist layers experienced multi-1310ing events are distributed along the two kinds of U-shaped 1310 (Fold I and II) with $N10^{\circ}E-directed$ fo1d axis in Wollong-myeon, Gwangtan-myeon, Jori-myeon of Paju city, the northeastern part of Gyeonggido. Occurrence of 10 layers of quartzite and 4 layers of calc-schist is not clear whether quartzite and schist layers were deposited sequentially each other or one to two layers of quartzite and schist were distributed repeatedly by isoclinal folding and thrusting, because of lack of sedimentary structures. In this paper, we tried to clarify the correlative relationship among the quartzite beds which are distributed along the U-shaped folds using geochemical tools such as rare earth element (REE) patterns and Nd isotope ratio. Quartzites have characteristics of LREE-flattened, HREE- slightly depleted patterns. They also show Ce negative anomaly whereas there are no Eu anomalies. As a result, quartzite beds occurred along the bilateral sides of fold axis show very similar REE patterns from outer side to inner side of 1314. The Nd model age of quartzite layers shows a trend that the inner part of fold is younger than the outer part of it. Such geochemical characteristics suggest that bilateral quartzite beds occurred along the fold axis were derived from the cogenetic source materials. The REE patterns and trace element geochemistry of mica schist intercalated within quartzite indicate that the quartzite and mica schist may be derived from different source materials. Our results suggest that REE and Nd isotope geochemistries may be very useful in clarifying the relationship of sedimentary deposits which do not show stratigraphical and structural connections in the field.

A Distinctive Chemical Composition of the Tektites from Thailand and Vietnam, and Its Geochemical Significance (타이와 베트남에서 수집된 텍타이트의 화학조성과 지구화학적 의의)

  • Lee, Seung-Gu;Tanaka, Tsuyoshi;Asahara, Yoshihiro;Minami, Masayo
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.281-295
    • /
    • 2017
  • We determined chemical compositions like abundance of major and trace elements, Sr and Nd isotope compositions for two tektites from the Thailand and Vietnam. Their chemical compositions are similar to each other, and seem to be similar to those of PAAS (Post Archean Australian Shale) rather than upper continental crust. In particular, primitive mantle-normalized spider diagrams and chondrite-normalized REE patterns for two tektites are the same, suggesting that they might be derived from the same source material. The $^{87}Sr/^{86}Sr$ and $^{143}Nd/^{144}Nd$ ratios from Thailand tektite are $0.718870{\pm}0.000008(2{\sigma}_m)$ and $0.512024{\pm}0.000012(2{\sigma}_m)$, respectively, and those from Vietnam are $0.717022{\pm}0.000008(2{\sigma}_m)$ and $0.511986{\pm}0.000013(2{\sigma}_m)$, respectively. The $^{87}Sr/^{86}Sr$ and $^{143}Nd/^{144}Nd$ ratios from Thailand tektite are slightly enriched than those of Vietnam tektite. $^{87}Sr/^{86}Sr$ ratios from the Vietnam and Thai tektites were plotted on the range of Australasian tektites reported previously. $^{143}Nd/^{144}Nd$ ratio of Vietnam tektite from this study was lower than the range of $^{143}Nd/^{144}Nd$ ratio from the Australasian tektite reported previously whereas that of Thai tektite was included in the range of $^{143}Nd/^{144}Nd$ ratio from the Australasian tektite. The geochemical characteristics from two tektites in this study indicate that they may be derived from the very similar source materials.

Petrology of the Syenites in Sancheong, Korea (경남 산청 지역의 섬장암에 관한 암석학적 연구)

  • Ok, Eun-Young;Kim, Jong-Sun;Lee, Sang-Won;Kang, Hee-Cheol
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.25-54
    • /
    • 2015
  • Syenite is not a common rock, unlike granitic rocks formed the major component of the continental crust. The aim of this study is to decipher the occurrences and detailed descriptive characteristics of the syenite distributed in Sancheong area, and to investigate the petrogenesis of the syenitic magma based on geochemical study. The dominant minerals in syenite are alkali feldspar (usually orthoclase and rarely microcline), plagioclase, amphibole, biotite, and quartz. Syenites are found in a wide variety of colors. The anhedral hornblende and biotite filling the boundary of feldspar and quartz indicate that the hydrous minerals were crystallized lately, and that water was insufficient at the beginning of crystallization in magma. According to the analysis of mineral composition, amphibole in syenite is mostly ferro-edenite, and the pressure is calculated as 3.3~4.9 kb with 11.9~17.3 km of emplacement depth. Biotite and pyroxene are plotted in the region of annite and hedenbergite, respectively. Based on petrochemical studies of major elements, syenite belongs to alkaline series, metaluminous, and I-type. On the other hand, the variation patterns of trace and rare earth elements of syenite differ from the patterns of diorite and granite. In the geochemical characteristics, syenite is different from gabbro-diorite spatially adjacent to syenite, as well as granite. These results suggest that each rock has been generated from the different sources of magma. Additionally, based on the experimental data, the syenitic magma can be formed (1) by the partial melting at a high pressure and dry system, (2) when the initial crystallization minerals to be residue with migration of the residual melts separated from the ascending cotectic magma (3) when fluorine compositions to be plentiful in the protolith and/or at depth of the magma. Based on the petrographic characteristics of the syenite, Sancheong syenitic magma may have been formed by partial melting in a dry system.

Sm-Nd mineral ages of charnockites and ilmenite-bearing anorthositic rocks of Jirisan area and their genetic relationship (지리산 지역 차노카이트와 함티탄철석 회장암질암의 Sm-Nd 광물연대 및 성인적 관계)

  • 박계헌;김동연;송용선
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.27-35
    • /
    • 2001
  • The charnockite of Jirisan area occurs within the Precambrian high grade metamorphic terrane associated with anorthosite body as many foreign examples. Sm-Nd ages were determined from whole rock-garnet pairs, which turned out $1827\pm$32($2\sigma$) Ma for the massive charnockite and $1820\pm$22(2$\sigma$) Ma for the foliated charnockite with $$\varepsilon$_{Nd}(T)$ of $-5.5\pm$0.2 and $-6.0\pm$0.5 respectively. $^{87}Sr/^{86}Sr$ initial ratios calculated with the these ages are 0.71319 and 0.71532 respectively. The fact that massive and foliated charnockites show identical age, identical Nd isotopic initial ratio, and similar Sr isotopic initial ratios suggest that they were generated at the same time from the same material even through their present textures are different. Initial ratios of Nd and Sr of the charnockites are quite distinct from the mantle values indicating the influence of continental crust. Sm-Nd age determined from the titanium bearing anorthositic rocks intruding the anorthosite body, using mineral separates of garnet, plagioclase, and mafic fraction, is $1792\pm$90(2$\sigma$) Ma with $$\varepsilon$_{Nd}(T)=-3.9$\pm$0.2$. The ^${87}Sr/^{86}Sr$ initial ratios calculated with this age are 0.70616~0.70619. The charnockites and the anorthositic rocks occurring in contact each other also reveal the same age within the error, which suggest a genetic relationship between them. However, chemical compositions of the charnockites and Hadong-Sancheong anorthosites cannot be explained by igneous differentiation. Their differences in Nd and Sr initial isotopic ratios indicate different source materials. Therefore, temporal association between them suggests the possibility of the anorthosite acting as a thermal source for the generation of the charnockite as other studies.

  • PDF