• Title/Summary/Keyword: 증폭 현상

Search Result 216, Processing Time 0.023 seconds

A novel method to improve SNR of the spectrum-sliced incoherent light source using the four-wave mixing in a dispersion-shifted fiber (4광파 혼합 현상을 이용한 스펙트럼 저미어진 광섬유 증폭 광원의 SNR 개선 방법)

  • 한정희;고준원;이재승;신상영
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.1
    • /
    • pp.15-19
    • /
    • 1998
  • We have present an all-optical technique to significantly reduce the dispersion penalty of a spectrum-sliced channel in high-speed and long-distance transmissions. We have reduced the necessary optical bandwidth for the 2.5 Gb/s incoherent light transmission down to 0.1 nm by expanding the optical bandwidth of a received signal. The optical bandwidth expansion was realized using the intra-channel fiber four-wave mixing at the receiver resulting in an improvement of th signal-to-noise ratio of the received light channel. We have successfully demonstrated the transmission of a 2.5 Gb/s NRZ signal with the 0.1 nm bandwidth over a 300 km dispersion-shifted fiber. An error floor occurs at $1{\times}10^{-5}$ BER without the optical bandwidth expansion. With the optical bandwidth expansion, however, the error floor decreases to less than $1{\times}10^{-10}$. The transmission penalty was less than 0.5 dB at $1{\times}10^{-10}$ BER. To our knowledge, the optical bandwidth of 0.1 nm used in our experiment is the narrowest optical bandwidth reported so far.

  • PDF

A Study on the Surface and Manufacturing Method of Nanostructure for Amplification of Plasmonic Phenomena of Nanoparticles (나노 입자의 플라즈모닉 현상 증폭을 위한 나노구조 표면과 제작방법에 관한 연구)

  • Yi, Jae Won;Jeong, Myungyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.55-59
    • /
    • 2022
  • In this paper, we compared the electric field and absorptance of nano particles in nanostructures by amplifying the electric field around the nanoparticles through plasmon resonance and comparing the structure that can increase the absorptance with the nanostructure by using the Finite Different Time Domain (FDTD) simulation. In addition, the width of the nanostructure was adjusted to 240 nm ~ 300 nm, and the light absorptance rate was higher as the gap between the particles was short. In addition, a study was conducted on the formation of nanoparticles and nanostructures on the surface through UV imprint. In order to form particles in the structure, the nano particles were first arranged in the mold used for the fabrication of the structure using spray coating, and then fabricated through UV imprinting. The nanostructure and particles were formed together by scanning electron microscopy.

Effect of Loading Frequency Dependent Soil Behavior on Seismic Site Effect (하중의 주파수에 의하여 지배받은 흙의 동적 거동이 부지증폭현상에 미치는 영향)

  • Park Du-Hee;Hashash Y.M.A;Lee Hyun-Woo;Kim Jae-Yoen
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.3
    • /
    • pp.23-35
    • /
    • 2006
  • Equivalent linear analysis is widely used in estimating local seismic site effects. The soil behavior in the analysis is often assumed to be rate-independent and is not influenced by the seismic loading frequency. Laboratory results, however, indicate that cohesive soil behavior is greatly influenced by the loading frequency. A new equivalent linear analysis method that accounts for the loading frequency dependent soil behavior is developed and used to perform a series of one dimensional site response analyses. Results indicate that while frequency dependent shear modulus has limited influence on computed site response, frequency dependent soil damping greatly filters out high frequency components of the ground motion and thus results in lower response.

A Numerical Analysis of Acoustic-Pressure Response of H2-Air Diffusion Flames with Application of Time-Lag Model (시간지연 모델의 적용을 통한 수소/공기 확산화염의 음향파 응답 분석)

  • Sohn, Chae-Hoon;Lim, Jun-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Acoustic-pressure response of diluted hydrogen-air diffusion flames is investigated numerically by adopting a fully unsteady analysis of flame structures in low and high pressure regimes. As acoustic frequency increases, finite-rate chemistry is enhanced through a nonlinear accumulation of heat release rate for any pressure regime, leading to a high amplification index. Same numerical results are analyzed with application of a pressure-sensitive time lag model, and thereby, interaction index and time lag are calculated for each pressure regime. The interaction index has the largest value in each pressure regime at an acoustic frequency near 1000 Hz. In a high-pressure regime, flames are more unstable than in a low-pressure regime. The interaction index shows a good agreement with the amplification index.

A Study on Amplification DRDoS Attacks and Defenses (DRDoS 증폭 공격 기법과 방어 기술 연구)

  • Choi, Hyunsang;Park, Hyundo;Lee, Heejo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.5
    • /
    • pp.429-437
    • /
    • 2015
  • DDoS attacks have been used for paralyzing popular Internet services. Especially, amplification attacks have grown dramatically in recent years. Defending against amplification attacks is challenging since the attacks usually generate extremely hugh amount of traffic and attack traffic is coming from legitimate servers, which is hard to differentiate from normal traffic. Moreover, some of protocols used by amplification attacks are widely adopted in IoT devices so that the number of servers susceptible to amplification attacks will continue to increase. This paper studies on the analysis of amplification attack mechanisms in detail and proposes defense methodologies for scenarios where attackers, abused servers or victims are in a monitoring network.

Spatial Distribution of Wave Overtopping along Vertical Structure due to Obliquely Incident Waves (경사입사파에 의한 직립구조물에서 월파의 공간적 분포)

  • Kim, Young-Taek;Lee, Jong-In;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.414-421
    • /
    • 2011
  • In determination of the crest height of a vertical structure against attacking of obliquely incident waves, most of existing studies have suggested to use the overtopping reduction factor due to incident angles. However, they have not considered the amplification of wave heights and the spatial distribution of wave overtopping. In this study, a spatial distribution of overtopping due to the amplification of wave heights along a vertical structure is investigated experimentally. It is recommended that the crest height can be determined by the same manner as that for normally incident waves up to 3 significant wave lengths from the one end of the structure. However, the rest part of the structure can be done by employing the overtopping reduction factor with considering the amplification of wave heights and the spatial distribution of wave overtopping.

Study on Acoustic Attenuation due to Particles and Flow Turning in Rocket Motors (고체 입자와 유동방향 변환에 의한 로켓 모터 내 음향 감쇠에 대한 고찰)

  • Kim, Taejin;Sung, Hong-Gye;Seo, Seonghyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.838-844
    • /
    • 2015
  • This paper includes summarization and analysis of previous research results on acoustic attenuation due to particles and flow turning in rocket motors among various damping parameters. Particle damping is the most effective mechanism in suppressing high-frequency combustion instabilities occurring in rocket combustion chambers, which is dependent on the size and the mass fraction of particles. Relatively weak attenuation by flow turning compared to particle damping depends on the geometry of propellant and a combustion chamber. Pumping driving effects need to be taken into account when realizing vorticity generation on the propellant surface. However, its driving effects become cancelled out by flow turning loss when the propellant geometry is cylindrical.

Iterative Image Restoration using Adaptive Directional Regularization (적응적인 방향성 정칙화 연산자를 이용한 반복 영상복원)

  • Kim, Yong-Hun;Shin, Hyoun-Jin;Yi, Tai-Hong
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.862-867
    • /
    • 2006
  • To restore image degraded by blur and additive noise in the optical and electrical system, a regularized iterative restoration is used. A regularization operator is usually applied to all over the image without considering the local characteristics of image in conventional method. As a result, ringing artifacts appear in edge regions and the noise is amplified in flat regions. To solve these problems we propose an adaptive regularization iterative restoration considering the characteristic of edge and flat regions using directional regularization operator. Experimental results show that the proposed method suppresses the noise amplification in flat regions, and restores the edge more sharply in edge regions.

Spray Characteristics of Nonimpinging-type Injector According to the Injection Pressure Variation and Angular Direction of Orifices (분사압력 및 분사각에 따른 비충돌형 인젝터의 분무특성)

  • Jung, Hun;Kim, Jong-Hyun;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.1-8
    • /
    • 2012
  • A water-flow test was carried out for the nonimpinging-type injector to be equipped on 70 N-class liquid-rocket engine under development. Breakup patterns of injector-spray transit from a smooth jet to wavy one as the injection angle increases, whereas spray-breakup lengths are inversely proportional to the injection pressure. It is confirmed that there exist ruffles on the surface of liquid column, which could be caught through the instantaneous spray images captured by high-speed camera. A phenomenon of spray shedding amplified at the specific pressure level of 0.93 MPa was an unexpected behavior of the injected stream and it is to be investigated further.

A Study of Transient Radiation Effects on Semiconductor Devices (전자소자의 과도방사선 영향 연구)

  • Lee, Nam-Ho;Oh, Seung-Chan;Whang, Young-Gwan;Kang, Heung-Sik
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.660-663
    • /
    • 2011
  • 우주방사선이나 과도펄스(Transient Radiation) 형태의 감마 방사선이 반도체에 조사되면 소자 내부에서 짧은 시간에 다량의 전하가 생성된다. 이 전하들과 증폭된 과전류는 소자의 고장(Upset, Latchup)과 오동작을 유발시키게 되고 나아가 전자부품이 소진(Burnout)되는 직접적인 원인이 된다. 본 연구에서는 이러한 핵폭 방출 과도방사선에 대한 전자부품/장비의 내방사선관련 기초연구로 군전자부품의 감마-과도방사선에 대한 피해분석 시험을 수행하고 나아가 과도방사선 방호기술 체계구축의 필요성에 대해 논하였다. 과도펄스 방사선시험은 군용으로 분류된 반도체 칩을 대상으로 포항 전자빔가속기를 사용하였다. 핵폭발 방출 과도방사선을 모사하기 위해 감마선 변환장치를 MCNP 설계를 통해 제작하고 단일모드의 마이크로초 단위 감마펄스 방사선을 방출시켜 시험대상 칩을 부착한 시험보드에 조사하는 과정으로 실험을 진행하였다. 온라인 고속 측정장치를 통한 전자소자의 과도방사선시험에서 다양한 피해현상을 측정할 수 있었고, 열상카메라 촬영을 통하여 과열상태를 관측함으로써 피해현상의 검증과 더불어 소진현상으로의 전개 가능성을 확인하였다.

  • PDF