• Title/Summary/Keyword: 증발지연

Search Result 52, Processing Time 0.031 seconds

A Parametric Study of Pervaporation-facilitated Esterification (전산모델링을 통한 투과증발-촉진 에스테르화 반응에 대한 연구)

  • Yeom, C.K.;Choi, Seung-Hak;Park, You-In;Chang, Sung-Soon
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.146-160
    • /
    • 2007
  • A parametric study on pervaporation-facilitated esterification was performed by using a practical model based on non-perfect separation through membrane which is not perfectly permselective to water. Thus, membrane selectivity as well as membrane capability to remove water should be taken into account in establishing the simulation model to explain how the membrane separation influence the esterification reaction process. It was shown by simulation that in the reaction systems with non-perfect separation, the permeation of reactants which are acid or/and alcohol retards the reaction by inducing the backward reaction so that reaction conversion curve is located between a reaction system coupled with pervaporation process having a perfect permselectivity to water and a reaction system without pervaporation process. The volume change of reaction system occurs as a result of the permeation through the membrane. The reaction volume change which can be characterized by the reaction ratio of $r_{\Psi}\;to\;r_{{\Psi}=1}$ affects reaction kinetics by concentrating reactants and products, respectively, with different extent with time; reactant-concentrating effect is dominant during the initial stage of reaction, resulting in facilitating the reaction, and then product-concentrating effect is exerted more on reaction, causing to slow down the reaction. When pervaporative dehydration is applied to the reaction system plays an important role in the reaction as well. The effect of timing to impose pervaporation on reaction system affected the reaction kinetics in terms of reaction rate and reaction conversion. A relationship was derived to explain membrane unit capacity and reaction parameters that will be used as a design tool to determine membrane unit capacity at a given reaction conditions or reaction parameters at a membrane unit capacity.

The effect of solvent evaporation of dentin adhesive on bonding efficacy (상아질 접착제의 용매 증발이 접착 효율에 미치는 영향)

  • Cho, Min-Woo;Kim, Ji-Yeon;Kim, Duck-Su;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.5
    • /
    • pp.321-334
    • /
    • 2010
  • Objectives: The purpose of this study is to evaluate bonding efficacy by means of measuring the effect of remained solvent on Degree of conversion(DC) and ${\mu}TBS$ and FE-SEM examination. Materials and Methods: Two 2-step total etching adhesives and two single-step self etching adhesives were used in this study. First, volume weight loss of 4 dentin adhesives were measured using weighting machine in process of time in normal conditions and calculate degree of evaporation (DE). Reaction/reference intensity ratio were measured using micro-Raman spectroscopy and calculate DC according to DE. Then 2 experimental groups were prepared according to air-drying methods (under, over) and control group was prepared to manufacturer's instruction. Total 12 groups were evaluated by means of micro tensile bond strength and FE-SEM examination. Results: Degree of evaporation (DE) was increased as time elapsed but different features were observed according to the kind of solvents. Acetone based adhesive showed higher DE than ethanol and butanol based adhesive. Degree of conversion (DC) was increased according to DE except for $S^3$ bond. In ${\mu}TBS$ evaluation, bond strength was increased by additional air-drying. Large gaps and droplets were observed in acetone based adhesives by FE-SEM pictures. Conclusions: Additional air-drying is recommended for single-step self etching adhesive but careful consideration is required for 2-step total etching adhesive because of oxygen inhibition layer. Evaporation method is carefully chose and applied according to the solvent type.

Effects of Aromatics and T90 Temperature for High Cetane Number Fuels on Exhaust Emissions in Low-Temperature Diesel Combustion (저온디젤연소에서 고세탄가 연료의 방향족 및 T90 온도가 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.371-377
    • /
    • 2011
  • The aim of this study is to investigate the effects of aromatics and T90 temperature for high cetane number (CN) of diesel fuels on combustion and exhaust emissions in low-temperature diesel combustion in a 1.9 L common rail direct injection diesel engine at 1500 rpm and 2.6 bar BMEP. Four sets of fuels with CN 55, aromatic content of 20% or 45% (vol. %), and T90 temperature of $270^{\circ}C$ or $340^{\circ}C$ were tested. Given engine operating conditions, all the fuels showed the same tendency of decrease of PM with an increase of an ignition delay time. At the same ignition delay time, the fuels with high T90 produced higher PM. At the same MFB50% location the amount of NOx was similar for all the fuels. Furthermore, at the same ignition delay time the amounts of THC and CO were similar as well for all the fuels. The amount of THC and CO increased with an extension of the ignition delay time mainly because of the increase of fuel-air over-mixing.

Hydrological performance analysis of green wall through indoor experiment (실내실험을 통한 벽면녹화에 따른 물순환 효과 분석)

  • Ji Hyun Moon;Jae Rock Park;Soon Chul Kwon;Jae Moon Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.302-302
    • /
    • 2023
  • 최근 도시의 왜곡된 물순환 문제를 해결하기 위해서 저영향개발(Low Impact Development, LID) 기법을 적극적으로 도입하고 있다. 저영향개발은 자연의 침투, 증발산, 여과 등의 자연기작을 모방하여 강우유출수를 침투 및 저류시키는 기법으로 물순환 체계를 회복시킬 수 있다. 저영향개발 기법의 하나인 벽면녹화는 건축물이나 기반 시설물의 벽면과 같은 인공지반에 기반을 조성하고 식물을 식재하는 시설로 짧은 시간에 녹지 면적을 만들 수 있다. 또한, 건축물로 인해 생겨난 수직적인 면을 녹지로 활용할 수 있어 도시에 매우 특화된 시설이다. 본 연구는 벽면녹화의 저영향개발 시설로서의 성능을 확인하기 위해 실내 실험을 진행하여 강우유출수 저감효과 및 지체시간 지연효과를 확인하였다. 강우유출수 저감효과는 유입량 대비 저류량을 기준으로 유출저감률을 산정하여 분석하였으며, 총 유출시간을 측정하여 지연효과를 판단하였다. 벽면녹화 현장실험 대상지는 경상남도 양산시 물금읍 부산대학교 양산캠퍼스에 위치한 한국 녹색인프라저영향개발센터이며, 실내에 플랜터형 벽면녹화 시스템을 적용하였다. 부산시 금정구 2012년~2021년의 강수량을 사용해 백분위수 강우사상을 기준으로 30, 50, 70mm/hr의 강우 시나리오를 선정하였다. 물순환 효과를 판단하기 위해 불투수면을 대조군으로 설정하여 불투수면의 유출이 종료되는 시점까지 지표면 유출을 모니터링 하였다. 그 결과, 30, 50, 70mm/hr 시나리오별 유출률은 91.76%, 92.18%, 94.54%로 불투수면과 대비하여 유출이 적게 발생하였으며 총 유출시간은 불투수면대비 47분, 88분, 58분 증가하여 지연효과가 있음을 확인하였다. 본 연구는 실험을 통해 벽면녹화의 수문학적 성능을 분석하고자 유출량 저감효과와 지연효과를 확인하였다. 추후 다양한 강우 시나리오와 제원에 따라 실험이 수행된다면 더 정확히 벽면녹화의 물순환 효과를 확인할 수 있을 것이다.

  • PDF

다년간(2000-2008) GPS 자료를 이용한 가강수량의 연간변화경향 분석

  • Son, Dong-Hyo;Jo, Jeong-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.41.3-41.3
    • /
    • 2009
  • 우주측지 정밀도 향상을 위해 대류층 지연오차의 정확한 산출은 필수적이다. 한국천문연구원은 GPS 자료를 이용하여 대류층 지연오차 요인인 대기 중의 수증기량을 정확히 산출하는 연구를 수행하고 있다. 또한, 1999년부터 GPS 관측을 시작한 이래로 10년 이상의 연속 관측자료를 보유하고 있다. 이 연구에서는2000년부터 2008년까지 한국천문연구원의 GPS 상시관측소 5곳(서울, 대전, 목포, 밀양, 속초)의 GPS 가강수량을 산출하고 이들의 다년간 변화경향을 분석하였다. 산출된 GPS 가강수량을 라디오존데 관측값과 비교하여 신뢰도 검증하였다. 선형회귀방법을 통하여 GPS 가강수량에 대한 경향을 분석하면 관측 지역마다 기울기의 차는 있으나 전체적으로 시간이 지날수록 GPS 가강수량이 증가하는 경향을 보였다. 해당 기간동안 GPS 가강수량의 연간 변화량은 평균 0.20mm 증가하였고 목포의 경우 0.25mm로 가장 큰 변화량을 보였으며 서울이 0.16mm로 가장 작은 변화량을 보였다. 여름철 연간 변화량은 평균 0.32mm 증가하였고 겨울철은 평균 0.08mm 감소하였다. 일반적으로 기온이 상승하면 상대습도가 내려가 수증기의 증발이 활발해져 대기중의 수증기량이 증가한다. 최근 10년간 기상청의 기온은 매해 평균 $0.16^{\circ}C$씩 증가하였으며 대기 중의 수증기량과 직접적으로 연관되어 있는 GPS 가강수량의 변화 경향과 유사함을 확인하였다.

  • PDF

A Study on Properties of Retarder via Tabletting Method (정제화 방법을 이용한 응결 지연제의 특성에 관한 연구)

  • Ryou, Jae-Suk;Yang, Neung-Won;Lee, Yong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.201-207
    • /
    • 2013
  • When hot weather concrete is utilized, the cooling methods of cooling pipe, liquid nitrogen, ice, etc., are used to prevent the poor consistency and cold joint due to high temperature. These methods, however, spike the production cost and energy consumption, and make quality control difficult. Among these methods is one that involves the use of a retarder. Although economical, retarder is caused difficulty of retarded hardening and setting time control due to inaccurate weighing and poor working condition. Therefore, how to make a tablet for hot weather concrete, as with the existing pharmacy and foods, is discussed in this study, including the following items: mortar setting time, flow test by elapsed time, physical and mechanical properties of concrete. As a result, gluconic acid is superior to lignosulfonic acid and the possibility of using them for such purpose without quality degradation was confirmed in this study, when retarder is tabletting.

Comparative Analysis of Seawater Desalination Technology in Korea and Overseas (국내 및 해외의 해수담수화 기술 비교분석)

  • Hwang, Moon-Hyun;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.5
    • /
    • pp.255-268
    • /
    • 2016
  • Climate change has increased the need to secure a new water resource in addition to the traditional water resources such as surface water and ground water. The seawater desalination market is growing sharply in accordance with this situation in Korea, "seawater engineering & architecture of high efficiency reverse osmosis (SEAHERO)" program was launched in 2007 to keep pace with world market trend. SEAHERO program was completed in 2014, contributed to turn the domestic technology in evaporative desalination technology to RO desalination technology. Currently, it is investigated that the average specific energy consumption of the whole RO plant is around $3.5kWh/m^3$. The Busan Gi-jang plant has shown $3.7{\sim}4.0kWh/m^3$, including operational electricity for plant and maintenance building. Although not world top level, domestic RO technology is considered to be able to compete in desalination market. Separately, many researchers in the world are developing new technologies for energy savings. Various processes, forward osmosis (FO), membrane distillation (MD) process are expected to compete with RO in the future market. In Korea, FO-RO hybrid process, MD and pressure retarded osmosis (PRO) process are under development through the research program in Ministry of Land, Infrastructure and Transport (MOLIT). The desalination technology level is expected to decrease to $2.5kWh/m^3$.

Agricultural Climatology of Cheju Island II. Potential Evapotranspiration Based on Near-Real Time Data Measured by Automated Weather Stations (제주도의 농업기후 분석 II. 무인관측강에 의한 기상실황자료 수집 및 증발산위 계산)

  • 윤진일
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.6
    • /
    • pp.504-511
    • /
    • 1990
  • Weather data acquisition and potential evapotranspiration (PET) calculation procedure were investigated to support the agricultural development efforts in the mid-altitude mountainous region of Cheju Island. Automated weather stations (AWS) were installed at two points representing the east and the west of the study area. A personal computer was employed to collect the near-real time weather data from AWS through the public telephone line. Hourly data were available for solar radiation, air and soil temperature, relative humidity, wind speed and direction, and precipitation. Based on the data for the month of June 1989, daily climatic features were comparatively analyzed for the two areas and the Penman equation was used to calculate PET. Air temperature was higher by 1 to 2 degree C in the east due mainly to the higher solar radiation and partly to the Fohn effect caused by the daytime southwesterly blowing over Mt. Halla. Diurnal march of soil temperature lagged by 4 hours behind that of air temperature and the diurnal range for 10cm subsurface soil was 3 degree C. Wind was consistently stronger and a marked sea-land breeze circulation was detected in the west. Calculated PET values were higher in the east by 6% than in the west. Overall values from the east and the west of the mid-altitude mountainous region were higher by 30% than those of the coastal region, which were estimated from the Class A Pan evaporation measured by the Korea Meteorological Service Offices.

  • PDF

A Study on Return Flow Ratio of Irrigation for a Paddy Field in Pumping Station by Water Balance Method (물수지분석 기법에 의한 양수장 몽리구역내 농업용수 회귀율 연구)

  • Choo, Tai-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.3
    • /
    • pp.249-255
    • /
    • 2004
  • To investigate the return flow ratio of irrigation water, lots of observations were made during the irrigation periods in 2003 crop year. This Area is a portion of Dae-Am pumping station basin which is located in Changryung-gun, Gyeongnam province. A water balance analysis was performed for a paddy field in Dae-Am pumping station in the Nakdong river basin, which is constructed for irrigation water supply. Daily rainfall data in the this area were collected and irrigation water flow rate, drainage water flow rate, infiltration and evaportranspiration were measured in field area. Irrigation water flow rate and drainage water flow rate were continuously observed by water level logger(GTDL-L10) during the growing season. The infiltration and evaportranspiration were measured by cylindrical 300mm depletion meter and cylindrical 200mm infiltrometer, respectively. Total irrigation and drainage flows were 654.7mm and 281.2mm in 2003. Total infiltration and evaportranspiration were 36.0mm and 160.0mm respectively. The mean of the daily evaportranspiration rate was 4.3mmm/d. The prompt return flow and retard return flow ratio were 43.0% and 5.5%, respectively. Total return flow ratio was 48.5%. Therefore, it can be concluded that the amount of irrigation water was much higher than design standard or reference in this study. It means that this was caused by the inadequate water management practice in the area where water was oversupplied on farmers' request rather than following sound water management principles, and design standard should be changed in the future.

Effects of Aromatics and T90 Temperature of Low Cetane Number Fuels on Exhaust Emissions in Low-Temperature Diesel Combustion (저온디젤연소에서 저세탄가 연료의 방향족 및 T90 온도가 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1121-1126
    • /
    • 2010
  • This study is to investigate the effects of aromatics and T90 for low cetane number (CN) fuels on combustion and exhaust emissions in low-temperature diesel combustion. We use a 1.9-L common rail direct injection diesel engine at 1500 rpm and 2.6 bar BMEP. Low temperature diesel combustion was achieved via a high external EGR rate and strategic injection control. The tested fuels four sets: the aromatic content was 20% (A20) or 45% (A45) and the T90 temperature was $270^{\circ}C$ (T270) or $340^{\circ}C$ (T340) with CN 30. Given the engine operating conditions, the T90 was the stronger factor on the ignition delay time, resulting in a longer ignition delay time for higher T90 fuels. All the fuels produced nearly zero PM because of the extension of the ignition delay time induced by the low cetane number. The aromatic content was the main factor that affected the NOx and the NOx increased with the aromatic content.