• Title/Summary/Keyword: 증기 터빈

Search Result 308, Processing Time 0.035 seconds

Calculation of Maximum Allowabel Temperature Difference for Life Design of Valve Casings for Steam Turbines of Fossil Power Plants (화력발전용 증기터빈 밸브 케이싱의 수명 설계를 위한 최대허용온도차 계산)

  • Ha, Joon-Wook;Kim, Tae-Woan;Lee, Boo-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.46-52
    • /
    • 1999
  • Large valves for steam turbines of fossil power plants are exposed to a severe mechanical and thermal loading resulting from steam with high pressure and high temperature. Valve casings are designed to withstand such a loading. During the operation of a plant, temperatures at inner and outer surface of the casings are measured and steam flow is controlled so that the measured difference is lower than the maximum allowable value determined in the design stage. In this paper, a method is presented to calculate the maximum allowable temperature difference at the inner and outer surface of valve casings for steam turbines of fossil power plants. The finite element method is used to analyze distribution of temperature and stresses of a casing under the operating condition. Low cycle fatigue and creep rupture are taken into consideration to determine the maximum allowable temperature difference. The method can be usefully applied in the design stage of the large valves for the steam turbines, contributing to safe and reliable operation of the fossil power plants.

  • PDF

Evaluation of Stress Corrosion Strength According to Crystal Structure of 12Cr Alloy Steel Used Steam Turbine Blade (증기터빈 블레이드용 12Cr 합금강의 결정구조에 따른 응력부식강도 평가)

  • Kang, Yong-Ho;Bae, Dong-Ho;Song, Jung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.911-917
    • /
    • 2008
  • It was found that more than 60% of the steam turbine blade damages occurred under the condition alternatively repeated wet and dry of vapor and condensed vapor at the lower pressure stage. And also, it has been well known that both the mechanical properties and environmental strength of the steam turbine blade can be changed by the crystal structure. However, in spite of these common facts, it is difficult to find out the quantitative results including the particular environmental condition as well as the actual service conditions. In this study, as a fundamental investigation to provide design information and reliability evaluation of the 12Cr alloy steel used for a steam turbine blade, stress corrosion strength of the 12Cr alloy steel of which its crystal structure is different was assessed under $2.5{\sim}3.5wt.%$ NaCl solution at 90oC. From the results, S-t curves for predicting damage life and design criterion of the 12Cr alloy steel including corrosion environment as well as S.C.C. condition were obtained.

A Study on the Development of Forging Process for Steam Turbine Titanium Blade (증기터빈 티타늄 블레이드의 단조공정 개발에 관한 연구)

  • Kim Y. H.;Cho J. R.;Jeong H. S.;Park H. C.;Lee N. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.354-357
    • /
    • 2005
  • When Ti-6Al-4V is used in long steam turbine blades, the main issues are how to improve the fatigue strength as a problem of internal quality and how to forge the thinnest possible blades as problem of dimensional precision. To assure an excellent fatigue strength, it is important to make the two phase fine and equiaxial structure by providing enough plastic deformation in the two phase$(\alpha\;phase/\beta\;phase)$ temperature region. Accordingly, it needs to predict that forging temperature, preform design and forging velocity in forging process. To achieve this end, the two steps forging process was suggested to forge the thin and twisted blades with a precision hammer considering die forces and metal flow. Two steps forging process consists of the flattening forging process and finishing forging process. Process in forging of a 1016mm long steam turbine blade is designed by the finite element method. This study attempts to derive systematic design procedures for process design in the forging. Forging parameters was analyzed in two-dimensional plane-strain simulation and two steps forging process carried out in three-dimensional simulation. Consequently, optimal forging process parameters of long steam turbine blades in Ti-6Al-4V with a high dimensional precision are selected in the hammer die forging.

  • PDF

Cost Allocation of Heat and Electricity on a Steam-Turbine Cogeneration (증기터빈 열병합발전에서 열과 전기의 비용배분)

  • Kim, Deok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.624-630
    • /
    • 2008
  • When various kinds of outputs are produced from a single energy system, the methodology which allocates the common cost to each output cost is very important because it is directly related with the profit and loss of producers and purchasers. In the cost allocation methodology of the heat and the electricity on a cogeneration, there are energy method, work method, proportional method, benefit distribution method, exergetic methods, and so on. On the other hand, we have proposed a worth method which can be applied to any system. The definition of this methodology is that the unit cost of a product is proportion to the worth. Where, worth is a certain evaluating basis that can equalize the worth of products. In this study, we applied worth method to a steam-turbine cogeneration which produces 22.2 MW of electricity and 44.4 Gcal/h of heat, and then we allocated 2,578 $/h of common cost to electricity cost and heat cost. Also, we compared with various cost allocation methods. As the result, we conclude that exergy of various kinds of worth basis evaluates the worth of heat and electricity most reasonably on this system.

Generation of 3D Model and Drawing of Rotor Using 2D Entity Groups with Attributes (속성이 부여된 2차원 엔터티 그룹을 이용한 로터의 3차원 모델 및 도면 생성)

  • Kim, Yeoung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.91-97
    • /
    • 2019
  • A method for generating 3D solid models and drawings for a rotor in the steam turbine is proposed. One of the most important design steps is generating the drawing for manufacturing it. This step is a very routine and time-consuming job because each drawing is composed of several kinds of views and many dimensions. To achieve automation for this activity, rotor profiles are composed of 2D entity groups with attributes. Based on this, the improved design process is developed as follows. First, the rotor profiles can be selected by searching for 2D entity groups using the related attributes. Second, the profiles are connected sequentially so that an entire rotor profile is determined. The completed profile is used to generate 2D drawings automatically, especially views, dimensions, and 3D models. The proposed method is implemented using a commercial CAD/CAM system, Unigraphics, and API functions written in C-language and applied to the rotor of steam turbines. Some illustrative examples are provided to show the effectiveness of the proposed method.

Cost Estimating of Electricity and Steam on a Gas-Turbine Cogeneration (가스터빈 열병합발전에서 생산된 전기와 증기의 원가산정)

  • Kim, Deok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.4
    • /
    • pp.252-259
    • /
    • 2009
  • When various kinds of outputs are produced from a single energy system, the methodology which allocates the common cost to each output cost is very important because it is directly related with the profit and loss of producers and purchasers. In the cost allocation methodology of the heat and the electricity on a cogeneration, there are energy method, work method, proportional method, benefit distribution method, various exergetic methods, and so on. On the other hand, we have proposed a worth evaluation method which can be applied to any system. The definition of this methodology is that the unit cost of a product is proportion to the worth. Where, worth is a certain evaluating basis that can equalize the worth of products. In this study, we applied this methodology to a gas-turbine cogeneration which produces 119.2 GJ/h of electricity and 134.7 GJ/h of steam, and then we allocated 3,150 $/h of fuel cost to electricity cost and steam cost. Also, we compared with various cost allocation methods. As the result, we conclude that reversible work of various kinds of worth basis evaluates the worth of heat and electricity most reasonably.

Numerical Analysis of Turbulent Combustion and Emissions in an HRSG System (가스터빈 열 회수 증기 발생기의 난류연소 해석과 배기가스 예측 및 검증)

  • Jang, Jihoon;Han, Karam;Park, Hoyoung;Lee, Wook-Ryun;Huh, Kangyul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.103-111
    • /
    • 2019
  • The combined cycle plant is an integration of gas turbine and steam turbine, combining the advantages of both cycles. It recovers the heat energy from gas turbine exhaust to use it to generate steam. The heat recovery steam generator plays a crucial role in combined cycle plants, providing the link between the gas turbine and the steam turbine. Simulation of the performance of the HRSG is required to study its effect on the entire cycle and system. Computational fluid dynamics has potential to become a useful to validate the performance of the HRSG. In this study a solver has been implemented in the open source code, OpenFOAM, for combustion simulation in the heat recovery steam generator. The solver is based on the steady laminar flamelet model to simulate detailed chemical reaction mechanism. Thereafter, the solver is used for simulation of HRSG system. Three cases with varying fuel injections and gas turbine exhaust gas flow rates were simulated and the results were compared with measurements at the system outlet. Predicted temperature and emissions and those from measurements showed the same trend and in quantitative agreement.

Failure Analysis of an Inlet Pipe of a Governor Valve in a Steam Turbine of a District Heating System (지역난방 증기 터빈 내 조속기 밸브 Inlet pipe 파손 원인 분석)

  • Chae, Hobyung;Kim, Woo Cheol;Kim, Heesan;Kim, Jung-Gu;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2022
  • The objective of this study was to perform failure analysis of an inlet pipe located in a governor valve of a steam turbine in a district heating system. During the operation, the temperature of the governor valve was increased to as high as ~500 ℃, which induced thermal expansion of the inlet pipe along both axial and radial directions. While the inlet pipe did not have contact with the valve seat, the side plane of the upside was constrained by the casing part, which led the inlet pipe to experience stress field in the form of fatigue and creep. The primary crack was initiated at about 30 mm below the top where the complex stress field was anticipated. These results suggest that the main failure mechanism is a combination of thermal fatigue and creep during the operation supported by the observation of apparent beach marks on the fracture surface and pores near the cracks, respectively.

Investigation of Hydraulic Flow Properties around the Mouths of Deep Intake and Discharge Structures at Nuclear Power Plant by Numerical Model (수치모의를 통한 원자력 발전소 심층 취·배수 구조물 유·출입구 주변에서의 수리학적 흐름특성 고찰)

  • Lee, Sang Hwa;Yi, Sung Myeon;Park, Byong Jun;Lee, Han Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.123-130
    • /
    • 2012
  • A cooling system is indispensable for the fossil and nuclear power plants which produce electricity by rotating the turbines with hot steam. A cycle of the typical cooling system includes pumping of seawater at the intake pump house, exchange of heat at the condenser, and discharge of hot water to the sea. The cooling type of the nuclear power plants in Korea recently evolves from the conventional surface intake/discharge systems to the submerged intake/discharge systems that minimize effectively an intake temperature rise of the existing plants and that are beneficial to the marine environment by reducing the high temperature region with an intensive dilution due to a high velocity jet and density differential at the mixing zone. It is highly anticipated that the future nuclear power plants in Korea will accommodate the submerged cooling system in credit of supplying the lower temperature water in the summer season. This study investigates the approach flow patterns at the velocity caps and discharge flow patterns from diffusers using the 3-D computational fluid dynamics code of $FLOW-3D^{(R)}$. The approach flow test has been conducted at the velocity caps with and without a cap. The discharge flow from the diffuser was simulated for the single-port diffuser and multi-ports diffuser. The flow characteristics to the velocity cap with a cap demonstrate that fish entrainment can significantly be minimized on account of the low vertical flow component around the cap. The flow pattern around the diffuser is well agreed with the schematic diagram by Jirka and Harleman.

Development of rotor overlay welding process (로타 오버레이 용접공정 개발)

  • Lee, Kyong-Woon;Kim, Dong-Jin;Kang, Sung-Tae
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.12-12
    • /
    • 2009
  • 터빈에서 핵심부품인 로터는 블레이드를 원심 운동시키는 대형 단조강이며, 고압의 증기 조건에서 고속회전하며 고온에서 운전과 저온에서 과속시험 동안 높은 원심력을 받는다. 또한 기동/정지 천이 동안 열응력을 받기 때문에, 이러한 운전조건에 부합되는 소재로서는 높은 Creep 강도 및 피로강도를 가지는 CrMoV type의 강종이 사용되어져 왔다. 발전소의 대용량화 및 고온화에 따라 종래의 증기조건에서 사용되어져 왔던 1%CrMoV강은 내산화성 및 내부식성이 문제가 되어 더 이상 사용이 불가하며, 고온/고압하에서도 우수한 소재 특성을 가지는 12%Cr강의 사용이 필수적이다. 그러나 12%Cr강으로 제작되는 로타는 Cr 양이 높기 때문에 저널부에 Galling 또는 Scuffing 이라 불리는 부적절한 마모현상과 사용 중 소착이 발생하기 쉬운 단점이 있기 때문에, 저널부에 Cr 함유량 2~3% 이하의 저합금강을 오버레이 용접하여 육성하는 일체형 가공구조의 로타 저널부가 주목되어 왔다. 따라서 본 연구에서는 Large scale 로타가 용접 도중 급열 및 급냉이 되지 않으면서 균일한 온도로 일정 시간 유지할 수 있는 열관리 장치 개발, 최적 오버레이 용접조건 선정 및 용접부 건전성 시험 평가를 통하여 12%Cr 로타 저널부의 최적 오버레이 용접공정을 확립하고자 하였다. 용접 열관리 장치는 전기저항 가열방식을 적용하고 있으며 용접이 최종 완료되기 전까지 로타 제품 전체는 $93^{\circ}C$이상의 온도로 유지 되어져야 하며, 규정 용접후열처리 온도는 $650^{\circ}C{\pm}14^{\circ}C$ 이다. 또한 로타 오버레이 용접은 모재 Set up $\Rightarrow$ 용접예열 $\Rightarrow$ GTA용접 $\Rightarrow$ SA용접 $\Rightarrow$ 용접후열(Post heating) $\Rightarrow$ 용접후열처리(PWHT) $\Rightarrow$ 정삭가공 $\Rightarrow$ NDE(UT) 순으로 수행 되어진다 실제 로타의 1/3 Scale로 시험편을 제작하여, 오버레이 mockup 시험을 수행한 후 화학성분, 경도 분포, 인장강도, 충격인성 및 굽힘시험을 수행한 결과, 오버레이 용접에서 요구되어지는 용접 물성값을 만족하는 것으로 확인되었다. 또한 균열 등의 선형 결함이나 기공, 슬라그 혼입과 같은 결함은 관찰되지 않았으며, 용접 시 아크의 안정성과 슬라그의 박리성은 양호하였으며 비드의 외관도 미려하여 용접 작업성도 양호하였다.

  • PDF