• Title/Summary/Keyword: 증기 터빈

Search Result 308, Processing Time 0.028 seconds

Effect of shield gas on weld quality in narrow gap TIG welding of alloy 617 (Alloy 617 내로갭 TIG용접에서 실드가스가 용접품질에 미치는 영향)

  • Ham, Hyo-Sik;Kim, Nam-Gyu;Kim, Beom-Jun;Kim, Mun-Gi;Bae, Dong-Ho;Cho, Sang-Myung
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.66-66
    • /
    • 2010
  • 국내 화력발전의 $CO_2$배출량을 크게 줄이고, 친환경, 그린 화력발전시스템을 위한 가장 효과적인 수단은 발전효율을 획기적으로 증대시키는 것이기 때문에 이를 목표로 한 기술개발은 경제적으로나 산업적으로 파급효과가 매우 크다. 발전효율 증대를 위한 핵심기술은 증기터빈의 성능향상이다. 현재 일본, 미국, EU 등 각국이 가장 관심을 가지고 기술개발에 심혈을 쏟고 있는 초내열, 내식 합금소재는 $700^{\circ}C$이상에서 기계적 성능을 보장할 수 있는 Ni기 합금개발이고, 현재까지 상당한 기술수준에 이르고 있는 것으로 파악되고 있다. 국내의 경우는 관련기술개발을 위해 연구가 진행되고 있으나, 기술적으로 아직 미흡한 수준이다. Ni기 초내열, 내식합금을 개발해서 그것을 화력발전용 증기터빈 부품, 특히 초내열합금 용접형 터빈로터 소재로 이용하기 위해서는 체계적이고 실용적인 연구를 통하여 용접형로타의 내구성과 신뢰성이 보장되는 최적 수준의 접합기술 개발이 선행되어야 한다. 따라서 본 연구는 선행연구로 $700^{\circ}C$이상 초내열/내식 Ni기 합금소재의 용접기술 개발을 위한 후보 소재 Alloy 617의 동종재료 용접 기술 개발을 목표로 한다. 본 연구는 Alloy617 12.6t 맞대기 이음으로 U그루브 내로갭 TIG용접을 하였다. 1pass 1layer 방식으로 총 8pass 8layer로 용접하였다. 전류 및 용접속도는 동일하게 두고 실드가스를 Ar 또는 Ar-$H_2$ 가스로 변경하여 시험하였다. Ar가스 TIG용접은 비드표면에 산화스케일이 생기고, 비드면이 거칠며 전체적으로 산화되었다. 반면에 Ar-$H_2$가스 TIG용접은 비드표면에 산화스케일이 없으며 표면이 미려하고 산화되지 않았다. 실드가스에 수소가스 첨가시 환원성가스로 역할을 하게 되고 이에 따라 용융지 표면에 산화피막을 제거하여 용접비드를 청정하게 하는 효과를 가진다.

  • PDF

Life Assessment of Gas Turbine Blade Based on Actual Operation Condition (실 운전조건을 고려한 가스터빈 블레이드 수명평가)

  • Choi, Woo Sung;Song, Gee Wook;Chang, Sung Yong;Kim, Beom Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1185-1191
    • /
    • 2014
  • Gas turbine blades that have complex geometry of the cooling holes and cooling passages are usually subjected to cyclic and sustained thermal loads due to changes in the operating characteristic in combined power plants; these results in non-uniform temperature and stress distributions according to time to gas turbine blades. Those operation conditions cause creep or thermo-mechanical fatigue damage and reduce the lifetime of gas turbine blades. Thus, an accurate analysis of the stresses caused by various loading conditions is required to ensure the integrity and to ensure an accurate life assessment of the components of a gas turbine. It is well known that computational analysis such as cross-linking process including CFD, heat transfer and stress analysis is used as an alternative to demonstration test. In this paper, temperatures and stresses of gas turbine blade were calculated with fluid-structural analysis integrating fluid-thermal-solid analysis methodologies by considering actual operation conditions. Based on analysis results, additionally, the total lifetime was obtained using creep and thermo-mechanical damage model.

The Assessment and Reduction Plan of Radiation Exposure During Decommissioning of the Steam Generator in Kori Unit 1 (고리1호기 증기발생기 제염해체 시 작업자 피폭선량 평가 및 저감화 방안)

  • Son, Young Jik;Park, Sang June;Byon, Jihyang;Ahn, Seokyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.377-387
    • /
    • 2018
  • Korea's first commercial nuclear power plant, Kori Unit 1, was permanently shut down on June 18, 2017, after 40 years of successful operation. Kori Unit 1 plans to construct a waste treatment facility in the turbine building prior to commencement of dismantling in earnest. Various radioactive wastes are decontaminated, disassembled, cut and melted in the waste treatment facility and sent to the radioactive waste repository. The proportion of metal radioactive waste in dismantled waste is about 70%, of which large metal radioactive waste is mainly generated in the primary circuit and has high radioactivity, so radiation exposure must be managed during disassembly. In this study, the steam generators are selected as large metal radioactive waste, the exposure doses of the dismantling workers are calculated using RESRAD-RECYCLE code and the methods for reducing the exposure doses are suggested.

Review of the Research and Development of Ceramic Matrix Composite Materials and Future Works (세라믹 매트릭스 복합재료 연구 개발 동향 및 전망)

  • Lee, Tae Ho
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.123-129
    • /
    • 2014
  • Ceramic matrix composites (CMCs) consist of such reinforcements as carbides, nitrides, borides and oxides, which have high melting points, low density, high modulus and high strength, for the purpose of increasing toughness. These materials are used for heat shielding systems for aerospace vehicles, high-temperature gas turbine combustion chambers, turbine blades, stator vane parts, etc. Oxide CMCs are used for the components of burner and flame holder and the high-temperature gas duct. CMCs are also applied to brake disks, which are subjected to severe thermal shock, and slide bearing parts under heavy loads. The research and development of the CMC are progressed for the strategic purpose in defense and energy industry; for instance, for aerospace applications in the U.S., and for hyper-speed aircraft, gas turbines, and atomic fissions in U.S., Japan, and Europe.

The CFD Analysis for the Fatigue Life Evaluation of HRSG Structure (배열회수 보일러 구조물의 피로수명 평가를 위한 유동해석)

  • Kim, Jinbeom;Kim, Chulho
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.7-17
    • /
    • 2020
  • Heat recovery steam generator(HRSG) generate steam using the high-temperature exhaust energy of gas turbines. Structures of HRSG are damaged by flow induced vibration of flue gas in some cases. In order to evaluate fatigue life to predict damage to a structure, a vibration analysis caused from flue gas should be used to derive the Power Spectral Density(PSD). However, it is very difficult to experimentally derive the vibrations generated by the exhaust gas form of gas turbines, which is very fast and complex. It was able to establish a way to identify vibration characteristics depending on the location of the structure by using high computing resources, large eddy simulation (LES). Random vibration analysis through these vibration characteristics(PSD) can evaluate the fatigue life of a structure.

상부패드의 형상변경을 통한 증기터빈용 Anti-spragging 틸팅패드 저널베어링 개발(2-1)

  • Na, Un-Hak
    • 열병합발전
    • /
    • s.50
    • /
    • pp.18-22
    • /
    • 2006
  • The tilting pad journal bearing has widely used to support high pressure/high rotating turbine rotors owing to their inherent dynamic stability characteristics. However, fatigue damages in the upper unlcaded pads and the break of locking pins etc. by pad spragging were continuously taken place in the actual steam turbines. The purpose of this paper is to develope a new bearing model that can prevent bearing damage problem effectively by pad spragging in a tilting pad journal bearing. A new bearing model which has a wedged groove is suggested from the studies of spragging mechanism performed by previously research works. The spragging characteristics of the upper unloaded pad are studied experimentally in order to verify the reliability of a new bearing model. It can be known that the phenomenon of pad spragging nearly does not occur in the new bearing model under the various experimental conditions. And it is observed that any kinds of bearing failures by pad spragging does not detect in the application of actual steam turbines.

  • PDF

Computational Simulation to Predict Emissions of a Heat Recovery Steam Generator (가스터빈 열 회수 증기 발생기의 배출 가스 예측 모사 해석)

  • Han, Woojoo;Jang, Jihoon;Lee, Youngjae;Han, Karam;Huh, Kang Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.67-70
    • /
    • 2014
  • We performed computational simulation for a heat recovery steam generator to predict emissions (especially carbon monoxide) and compare the results with experimental data. We used the steady laminar flamelet model(SLFM) which can consider detailed chemical mechanisms. To reduce the number of grid, we simplified the geometry of the whole heat recovery steam generator. In conclusion, the trend of simulation results is good agreement with experimental data.

  • PDF

Dynamics Analysis for Preventing Failures of Steam Turbine Blade (증기터빈 블레이드의 파손방지를 위한 동특성 해석)

  • Kim, Hyo-Jin;Park, Jung-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.1 no.1 s.1
    • /
    • pp.17-23
    • /
    • 1998
  • The blade failures are identified as the leading cause of unplanned outages for steam turbine. Most investigations of the failures are limited to material tests, chemical analysis of deposits, and possibly examination of material specimens. But to correct a blading problem requires more than positive identification of the mechanisms involved. An analytic procedure capable of predicting stress and dynamic characteristics of turbine blades is presented to increase steam turbine availability by decreasing blade failures. Finite element method is used to model and predict natural frequencies, steady and dynamic stresses of turbine blades. The procedure is illustrated by the case study. This procedure is used to guide, and support the plant manager's decision to avoid a costly, unplanned outage

  • PDF

Selection of Operating Parameters and Management of Operation Console for Protection and Control of Steam Turbine in a Korea Standard Type Nuclear Power Plant (한국 표준형 원자력 발전소 증기터빈 보호 및 제어를 위한 운전인자 선정과 운전반 운영)

  • Choi, In-Kyu;Kim, Jong-An;Woo, Joo-Hee;Shin, Man-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.71-78
    • /
    • 2011
  • This paper contains the selection of operation parameters for protection and control of steam turbine in a Korea Standard Type Nuclear Power Plant. The safety of nuclear reactor must be ensured which generates nuclear energy and produces steam. Also, the safety of turbine, which consume the nuclear energy as a core machine, must be ensured. For the purpose of this, we describe how the operating parameters were selected, reviewed, implemented into the operator console and finally put into actual operation of the system.

Low Cycle Fatigue Behavior of 12Cr Steel for Thermal Power Plant Steam Turbine (화력발전소 증기터빈용 12Cr 강의 저주기 피로거동)

  • Kang, Myeong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.71-76
    • /
    • 2002
  • In this study low cycle fatigue (LCF) behavior of 12Cr steel at high temperature are described. Secondly, comparisons between predicted lives and experimental lives are made for the several sample life prediction models. Two minute hold period in either tension or compression reduce the number of cycles to failure by about a factor of two. Twenty minute hold periods in compression lead to shorter lives than 2 minute hold periods in compression. Experiments showed that life predictions from classical phenomenological models have limitations. More LCF experiments should be pursued to gain understanding of the physical damage mechanisms and to allow the development of physically-based models which can enhance the accuracy of the predictions of components. From a design point-of-view, life prediction has been judged acceptable for these particular loading conditions but extrapolations to thermo-mechanical fatigue loading, for example, require more sophisticated models including physical damage mechanisms.