• Title/Summary/Keyword: 증기체적분율

Search Result 2, Processing Time 0.018 seconds

Cavitating Flow Analysis of Multistage Centrifugal Pump (다단 원심펌프의 공동현상 유동해석)

  • Rakibuzzaman, Rakibuzzaman;Suh, Sang-Ho;Kim, Hyoung-Ho;Cho, Min-Tae;Shin, Byeong-Rog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.65-71
    • /
    • 2015
  • The purpose of this study is to investigate cavitating flow of the multistage centrifugal pump. Cavitation is observed in the impeller leading edge and trailing edge of the suction area. Head coefficients are measured under different flow operating conditions. The Rayleigh-Plesset cavitation model is adapted to predict the occurrence of cavitation in the pump. The two-phase gas-liquid homogeneous CFD method is used to analyze the centrifugal pump performances with two equation transport turbulence model. The simulations are carried out with three different flow coefficients such as 0.103, 0.128 and 0.154. The occurrence of cavitation described according to water vapor volume fraction. The head versus NPSH (Net Positive Suction Head) also measured using different flow coefficients. Development of cavitation in the centrifugal pump impellerI is discussed. It is showed that the simulation represents the head drop about 3%.

Numerical Study on Cavitation Performance Evaluation in a Centrifugal Pump Impeller (원심펌프 임펠러의 캐비테이션 성능평가에 관한 수치적 연구)

  • Mo, Jang-Oh;Kim, You-Taek;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.286-293
    • /
    • 2012
  • In this investigation, flow analysis with single phase has been performed for a centrifugal impeller with a design efficiency of 90%, head of 20m and rotational speed of 3500 rpm at a design flow rate of 16m3. The impeller was designed based on an empirical formula suggested by A.J. Stepanoff. In a case of the single phase analysis, the hydraulic efficiency and head is 88.8% and 19.4m, respectively, which showed a good agreement with the values designed. The flow analysis with two phases was carried out under the various NPSH, at whose 8.79m the cavitation on the suction side of the blade was observed. The required NPSH of the designed impeller is approximately 6.5m and above this value, the designed centrifugal pump impeller needs to be operated under inlet pressure condition.