• Title/Summary/Keyword: 증기분산

Search Result 35, Processing Time 0.021 seconds

Preparation of Pt Catalyst Supported on Zeolite Sheet and Its Performance of Toluene Combustion (제올라이트 쉬트 담지 백금촉매의 제조 및 톨루엔 연소 특성)

  • Kim, Jin-Bae;Im, Na Rae;Kim, Hong Soo;Yoo, Yoon Jong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.323-327
    • /
    • 2011
  • A zeolite sheet (ceramic paper containing zeolite) made in a cylindrical configuration can be applied to a honeycomb rotor for the effective VOC removal. In this study, the zeolite sheet containing ZSM-5 was used as a support for Pt-loading, and its catalytic activity for the toluene combustion reaction was compared with those of the other Pt catalysts loaded on ${\gamma}-Al_2O_3$ and cordierite honeycomb. Pt/zeolite sheet catalyst showed a higher activity for toluene combustion reaction than that of $Pt/{\gamma}-Al_2O_3$ or Pt/cordierite honeycomb. On the other hand, the dispersion of Pt particles loaded on the zeolite sheet was improved by the pretreatment with $NH_3-H_2O$ vapor at room temperature. Consequently, the pretreatment of Pt/zeolite sheet by $NH_3-H_2O$ vapor significantly enhanced the catalytic activation for toluene combustion reaction.

Exergy Analysis and Heat Exchanger Network Synthesis for Improvement of a Hydrogen Production Process: Practical Application to On-Site Hydrogen Refueling Stations (수소 생산 공정 개선을 위한 엑서지 분석과 열 교환망 합성: 분산형 수소 충전소에 대한 실용적 적용)

  • YUN, SEUNGGWAN;CHO, HYUNGTAE;KIM, MYUNGJUN;LEE, JAEWON;KIM, JUNGHWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.515-524
    • /
    • 2022
  • In this study, the on-site hydrogen production process for refueling stations that were not energy-optimized was improved through exergy analysis and heat exchange network synthesis. Furthermore, the process was scaled up from 30 Nm3/h to 150 Nm3/h to improve hydrogen production capacity. Exergy analysis results show that exergy destruction in the SMR reactor and the heat exchanger accounts for 58.1 and 19.8%, respectively. Thus, the process is improved by modifying the heat exchange network to reduce the exergy loss in these units. As a result of the process simulation analysis, thermal and exergy efficiency is improved from 75.7 to 78.6% and 68.1 to 70.4%, respectively. In conclusion, it is expected to improve the process efficiency when installing on-site hydrogen refueling stations.

A Model-Fitting Approach of External Force on Electric Pole Using Generalized Additive Model (일반화 가법 모형을 이용한 전주 외력 모델링)

  • Park, Chul Young;Shin, Chang Sun;Park, Myung Hye;Lee, Seung Bae;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.11
    • /
    • pp.445-452
    • /
    • 2017
  • Electric pole is a supporting beam used for power transmission/distribution which accelerometer are used for measuring a external force. The meteorological condition has various effects on the external forces of electric pole. One of them is the elasticity change of the aerial wire. It is very important to perform modelling. The acceleration sensor is converted into a pitch and a roll angle. The meteorological condition has a high correlation between variables, and selecting significant explanatory variables for modeling may result in the problem of over-fitting. We constructed high deviance explained model considering multicollinearity using the Generalized Additive Model which is one of the machine learning methods. As a result of the Variation Inflation Factor Test, we selected and fitted the significant variable as temperature, precipitation, wind speed, wind direction, air pressure, dewpoint, hours of daylight and cloud cover. It was noted that the Hours of daylight, cloud cover and air pressure has high explained value in explonatory variable. The average coefficient of determination (R-Squared) of the Generalized Additive Model was 0.69. The constructed model can help to predict the influence on the external forces of electric pole, and contribute to the purpose of securing safety on utility pole.

Evaluation of Technical Production Efficiency and Business Structure of Domestic Combined Heat and Power (CHP) Operators: Panel Stochastic Frontier Model Analysis for 16 Collective Energy Operators (국내 열병합발전사업의 기술적 생산효율성 추정 및 사업구조 평가: 16개 집단에너지사업자에 대한 패널 확률프론티어모형(SFA) 분석)

  • Lim, Hyungwoo;Kim, Jaehyeok;Shin, Donghyun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.4
    • /
    • pp.557-579
    • /
    • 2021
  • Collective energy is an intermediate stage in energy conversion and has a great influence on the power structure as a distributed power source. However, the problem of the collective energy business has recently emerged due to the worsening profitability of some collective energy operators. This study measured the technical efficiency of major operators through the estimation of the production efficiency of Korean collective energy operators, and based on this, we looked at ways to improve the profit structure of operators. After collecting detailed data from 16 collective energy operators between 2016 and 2019, the production efficiency of operators was estimated using the panel stochastic frontier model. As a result of the estimation, combined steam power operators showed the highest production efficiency and reverse CHP operators showed the lowest efficiency. Furthermore, as a result of examining the factors influencing profitability, it was confirmed that production efficiency has a positive effect on overall profitability. However, businesses with a high proportion of heat production, such as small district electricity operators, profitability was lower. This phenomenon is due to the structural limitations of the current heat sales market. Hence, the adjustment of the heat sales unit price is necessary to improve profitability of collective energy operators.

Synthesis and Phase Relations of Potassium-Beta-Aluminas in the Ternary System K2O-MgO-Al2O3 (K2O-MgO-Al2O3 3성분계에서 K+-β/β"-Al2O3의 합성 및 상관계)

  • Ham, Choul-Hwan;Lim, Sung-Ki;Lee, Chung-Kee;Yoo, Seung-Eul
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1086-1091
    • /
    • 1999
  • $K^+-{\beta}/{\beta}"-Al_2O_3$ in the ternary system $K_2O-MgO-Al_2O_3$ was directly synthesized by solid state reaction. The phase formation and phase relation were carefully investigated in relation to starting composition, calcining temperature and time, and dispersion medium. The optimal synthetic condition was also examined for the formation of ${\beta}"-Al_2O_3$ phase with a maximum fraction. As a composition range, the mole ratio of $K_2O$ to $Al_2O_3$ was changed from 1:5 to 1:6.2 and the amount of MgO used as a stabilizer was varied from 4.2 wt % to 6.3 wt %. The calcining temperature was selected between $1000^{\circ}C$ and $1500^{\circ}C$. At $1000^{\circ}C$, the ${\beta}/{\beta}"-Al_2O_3$ phases began to form resulted from the combining of ${\alpha}-Al_2O_3$ and $KAlO_2$ and increased with temperature rising. All of ${\alpha}-Al_2O_3$ phase disappeared to be homogenized to the ${\beta}/{\beta}"-Al_2O_3$ phase at $1200^{\circ}C$. Near the temperature at $1300^{\circ}C$, the fraction of ${\beta}"-Al_2O_3$ phase showed a maximum value with the composition of $K_{1.67}Mg_{0.67}Al_{10.33}O_{17}$. At temperatures above $1300^{\circ}C$, the fraction of ${\beta}"-Al_2O_3$ phase decreased gradually owing to $K_2O$ loss caused by a high potassium vapor pressure, and the appropriate calcining time was about 5 hours. Acetone was more effective than distilled water as a dispersion medium for milling and mixing.

  • PDF