• Title/Summary/Keyword: 증기분사

Search Result 83, Processing Time 0.042 seconds

Design and Validation Test of Rocket Engine Head Generating High Temperature and High Pressure Steam (고온고압 증기 발생장치의 설계 및 예비운용시험)

  • Park, Jinsoo;Yu, Isang;Oh, Junghwa;Ko, Youngsung;Kim, Kyungseok;Shin, Dongsun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.637-642
    • /
    • 2017
  • In this study, cold flow and combustion tests are conducted and analyzed to validate designed rocket engine head generating high temperature/pressure steam. At first, uni-injector was designed and manufactured, and cold flow test was conducted. Through this, differential pressure that can supply designed flow rate was confirmed. Also, Each injector's spray pattern were confirmed by patternator. Based on cold flow test results, we selected injectors among the candidates and arranged them on engine head, and cold flow and propellant spray tests were conducted. Finally, combustion test was carried out to analyze the flow rate, pressure, combustion efficiency. As a result, validation of rocket engine head for the development of the high temperature and high pressure steam generator has been completed.

  • PDF

증기 제트 응축현상에서의 응축하중에 대한 실험적 연구

  • Park, Chun-Kyung;Cho, Seok;Song, Cheol-Hwa;Yang, Seon-Kyu;Cheon, Se-Young;Jeong, Mun-Ki
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.541-546
    • /
    • 1998
  • 증기 제트 응축에서 발생하는 응축하중을 실험적으로 고찰하였다. 네 가지 서로 다른 직경의 노즐 (5, 10, 15, 20mm) 과 증기분사기를 응축실험에 사용하였으며, 증기 질량유속과 물온도를 변화하면서 동압을 측정하였다. 실험결과에 의하면 압력파의 진폭은 노즐 직경이 작을수록 작았다. 한편 압력파의 진폭은 일반적으로 물온도가 증가할수록 증가하나 물온도가 어느 한도 이상으로 증가하면 오히려 감소하는 경향을 보였다. 그러나 물온도가 아주 높고 증기 질량유속이 큰 경우에는 불안정한 압력파가 발생할 가능성이 관찰되었다.

  • PDF

NOx Formation Characteristics of Fuel Staged Gas Turbine Combustor (단계적 연료공급 가스터빈 연소기의 NOx 발생특성)

  • Lee, Chan;Lee, Han-Goo;Kang, Seung-Jong
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.05a
    • /
    • pp.15-21
    • /
    • 1994
  • 단계적 연료방식을 가지는 가스터빈 연소기의 해석을 위한 방법을 제안하였으며, 이를 바탕으로 연료배분방식에 따른 연소기의 연소 및 NOx 발생특성을 규명하였다. 연소기 해석모델은 연소기 내부를 선회기구역, 1차연소구역, 재순환구역, 2차연소구역 및 희석구역으로 나누어 각각의 반응구역을 혼합반응기, 플러그 유동반응기의 모델로서 근사하였다. 반응기내의 연소 및 NOx 생성반응은 천연가스 반응모델과 Zel'dovich 의 NOx 모델을 이용하여 예측하였다. 본 해석방법을 이용하여, 각 반응구역에 유입되는 연료량이 연소기내 연소특성, NOx 발생 특성 및 온도분포에 미치는 영향을 검토하였다. 또한, NOx 저감을 위해 증기분사를 사용하는 경우에 분사위치가 NOx 발생에 미치는 영향을 분석하여, 가스터빈 연소기설계에 필요한 기초자료를 제공하였다.

  • PDF

A Thermodynamic Study on Suction Cooling-Steam Injected Gas Turbine Cycle (吸氣冷却-蒸氣噴射 가스터빈 사이클에 관한 열역학적 연구)

  • 박종구;양옥룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.77-86
    • /
    • 1992
  • This paper discusses the thermodynamic study on the suction cooling-steam injected gas turbine cycle. The aim of this study is to improve the thermal efficiency and the specific output by steam injection produced by the waste heat from the waste heat recovery boiler and by cooling compressor inlet air by an ammonia absorption-type suction cooling system. The operating region of this newly devised cycle depends upon the pinch point limit and the outlet temperature of refrigerator. The higher steam injection ratio and the lower the evaporating temperature of refrigerant allow the higher thermal efficiency and the specific output. The optimum pressure ratios and the steam injection ratios for the maximum thermal efficiency and the specific output can be found. It is evident that this cycle considered as one of the most effective methods which can obtain the higher thermal efficiency and the specific output comparing with the conventional simple cycle and steam injected gas turbine cycle.

Study on the Performance Analysis of an Axial-Type Turbine with Steam Injection (증기가 분사된 축류형 터빈의 성능해석에 관한 연구)

  • Cho, Soo-Yong;Kim, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.4 s.13
    • /
    • pp.28-36
    • /
    • 2001
  • Performance analysis is conducted on an axial-type turbine which is used for fire extinction by injecting water or steam into the turbine. Loss models developed by Hacker and Okapuu are applied for predicting the performance of turbine. Pressure loss generated through a turbine is converted to the thermal efficiency, and thermal and gas properties are calculated within a turbine passage. Total-to-total efficiency, total-to-static efficiency, static temperature at the exit of turbine, output power, flow coefficient, blade loading coefficient, and expansion ratio are predicted with changing the amount of injected steam and the rotational speed. The 74 kW class gas turbine developed at KIMM is chosen for performance analysis. The 74 kW class turbine consists of 1 stage like a current developing gas turbine for fire extinction. Water or steam is injected at the end of combustor, and results show that efficiency and output power are dependent on the temperature of injected water or steam and the static temperature at the exit is decreased.

  • PDF

Exergy Analysis of Gas Turbine System Depending on Steam Injection Method (증기 분사 방식에 따른 가스터빈 시스템의 엑서지 해석)

  • MIJIDDORJ, DASHTSEDEN;LIM, SOK KYU;JUNG, YOUNG GUAN;KIM, KYOUNG HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.570-576
    • /
    • 2017
  • Gas turbine system with steam injection has shown outstanding advantages such as high specific power and NOx reduction. In the present work, a comparative exergetic analysis was carried out for Steam Injected Gas Turbine (STIG), Regenerative Steam Injected Gas Turbine (RSTIG), and Regenerative After Fogging Gas Turbine (RAF). Effects of pressure ratio, steam injection ratio and steam injection method on the system performance was theoretically investigated. The results showed that the order of the highest exergy efficiency is RSTIG, RAF, and STIG for low pressure ratios but STIG, RSTIG, and RAF for high pressure ratios. In each arrangement, the combustion chamber has the highest exergy destruction and the compressor has the second one.

The study on the variable orifice spray of the steam power plant desuperheater (화력발전설비의 과열증기저감용 가변오리피스 분사 특성)

  • Kim, Jeong-Sik;Kim, Kwang-Hee;Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • The steam power plant is becoming more important to supply a stable power lately. Desuperheater of the steam power plant facility plays a role in maintaining the proper superheat to avoid damage turbine power due to the superheated steam produced in the boiler. In this study, when the steam flows $530^{\circ}C$, 36.7 kg/s, 1.36 MPa in the 460mm pipe, variable orifice nozzle developed in Korea was carried out the performance analysis in coolant injection conditions of $150^{\circ}C$, 4.28 MPa. Findings, steam pipe coolant temperature was maintained at $446^{\circ}C$ and sprayed droplet size was verified by $50{\mu}m$ or less.