• Title/Summary/Keyword: 중형상용차

Search Result 4, Processing Time 0.025 seconds

Thermal Fluid Flow and Deformation Analysis of Medium Commercial Vehicle Ventilated Brake Disc in Braking (중형 상용차 통풍형 브레이크 디스크의 제동 시 열 유동 및 변형 해석)

  • Kang, Chaeuk;Choi, Gyoojae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.63-69
    • /
    • 2014
  • Domestic automobile companies have adopted drum type brake system for commercial vehicles. However recently those companies have been applying disc-brake system to solve vehicle control-instability and inefficient heat discharge performance of conventional drum brake system for a medium commercial vehicle. Because the kinetic energy of a running commercial vehicle is relatively high, the brake system should discharge lots of heat energy while braking. A ventilated type brake disc has been used to increase heat discharge performance of a brake system. The vent structure of a disc highly affects cooling efficiency. This paper compares thermal characteristics of three types of vent structure in JASO C421 braking condition. It is found that the slant bend type disc has the lowest temperature and thermal stress distributions in the braking condition.

Structural Design of the Light Weight Axle Beam for Medium Duty Commercial Vehicle Using Hot Press (중형 상용차용 프레스 성형 차축빔의 경량화 설계)

  • Sim, Kijoong;Shin, Hangwoo;Cho, Wonyoung;Choi, Gyoojae;Lee, Youngchoon;Son, Youngho;Jeon, Namjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.371-379
    • /
    • 2015
  • This paper represents the structural design of the light weight axle beam for medium duty commercial vehicle using hot press. To reduce the weight of the axle, axle beam of solid type was replaced by hollow type which was made by hot press. According to the change of axle beam structure and manufacturing method, we have to investigate the structural strength and fatigue performance. To verify the axle beam performance, the structural analysis was carried out by simplified axle beam model and various design parameters that are axle beam height, thickness and width. From the analysis results, the light weight axle beam structure was founded and applied the full model analysis. This study will be used as a guidance in development of the light weight axle for medium duty commercial vehicle.

Heat and Flow Analysis in the HVAC Impeller for Mid-Size Car (중형차 HVAC 임펠러 내의 열유동 해석)

  • Lee, Dong-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1503-1510
    • /
    • 2012
  • In this research, various cases of centrifugal impeller for HVAC system have been numerically analyzed by changing center angle of blades and length of outlet. Commercial CFD code, FLUENT has been used to calculate velocity, pressure, turbulence intensity, and temperature that can lead numerous results. Regardless of warming up, when the heater power level was increased, the temperature inside surrounding impeller also increased due to flowing outer air, but the temperature decreased because of flowing inner air. Consequently, the variation of central angle of blades and length of outlet led difference of velocity and flow rate which can reduce $CO_2$ in gas emission.

Mechanical Reliability Evaluation on Solder Joint of CCB for Compact Advanced Satellite (Sherlock을 활용한 차세대 중형위성용 CCB 솔더 접합부의 기계적 신뢰성 평가)

  • Jeon, Young-Hyeon;Kim, Hyun-Soo;Lim, In-Ok;Kim, Youngsun;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.498-507
    • /
    • 2017
  • Electronic equipments comprised of high density components with various packaging types have been recently applied to a satellite. Therefore, to guarantee high reliability of electrical equipment, a design approach, which can reduce the development period and cost through an early diagnosis in potential risks of failure, should be established. In the previous research, the reliability assesment of the electronic equipments have based on Steinberg's fatigue failure theory. However, this theory was not enough for further investigation of life prediction and reliability of the electronic equipments comprised of various sizes and packaging types due to its theoretical limitations and analysis results sensitivity with regard to different modeling technic. In that case, if detailed finite element model is established, aforementioned problems can be readily solved. However, this approach might arise disadvantage of spending much time. In this paper, to establish strategy for high reliability design of electronic equipment, we performed mechanical reliability evaluation of CCB (Camera Controller Box) at qualification level based on the approach using Sherlock unlike design techniques applied to existing business.