• Title/Summary/Keyword: 중첩 격자

Search Result 147, Processing Time 0.021 seconds

A Design for Dynamic Separation of Duty in Role-Based Access Control Systems (역할 기반의 접근제어 시스템에서 동적 의무분리 만족을 위한 설계 방법)

  • Ji, Hee-Young;Park, Seog
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.320-322
    • /
    • 1999
  • 역할 기반의 접근제어 시스템은 응용에 따라 보호 객체들에 대한 접근을 역할들로 분류하여 정형 트랜잭션과 데이터의 무결성을 보장하는 의무분리의 원리로 정보를 처리하는 시스템으로 편리하고 단순한 권한 관리를 제공한다. 본 논문에서는 기업 환경에 적합한 역할 기반의 접근제어 시스템에서 데이터베이스 내에 저장된 데이터에 대한 권한 없는 접근, 고의적인 파괴 및 변경을 야기하는 사고로부터 데이터베이스를 보호하기 위해 정보의 무결성 보장을 위한 의무분리의 원리를 제안한다. 그리고 제안된 원리를 기반으로 하여 적용 대상으로 상호 배타적인 부트랜잭션들을 포함하고 있는 중첩 트랜잭션을 생각해 보았으며, 여기에 동적 의무분리 요구사항을 만족시키기 위해서 주체, 세션 기반에서 새롭게 해석하였다. 이 기법은 시스템 운영의 유연성을 향상시키고, 역할 관리를 단순화시키는 장점을 가진다. 또한 여러 트랜잭션들이 동시에 실행되는 환경하에 정보의 무결성 유지를 위해서 본 논문에서 제안한 의무분리 기법을 적용하였다. 이때 감염된 트로이언 목마에 의해 발생될 수 있는 정보의 유출문제를 해결하고자 의무분리를 위한 격자 구조를 설계하고 이를 바탕으로 해석하였다.

  • PDF

Numerical Study of Rotor-Tower Interaction for Horizontal Axis Wind Turbine (수평축 풍력터빈의 로터-타워 공력 간섭현상에 대한 수치적 연구)

  • Kim, Jae-Won;Yu, Dong-Ok;Kwon, Oh-Joon
    • Journal of Wind Energy
    • /
    • v.2 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • In the present study, numerical unsteady simulations of the NREL Phase VI wind turbine in downwind operation conditions were conducted to investigate rotor-tower interaction. The calculations were performed using an unstructured mesh, incompressible Reynolds-averaged Navier-Stokes flow solver. To capture the unsteady effects associated with the tower shadow between the rotor blades and the tower, the wind turbine was modelled including the rotor, tower, hub, and nacelle. The present results generally showed good agreements with available experimental data. At the lowest wind speed, the pressure distribution was characterized by a complete collapse of the suction peak on the blade when the blade passes through the tower wake. It was found that unsteady effects play a significant role in the response of the blades.

Plane-based Computational Integral Imaging Reconstruction Method of Three-Dimensional Images based on Round-type Mapping Model (원형 매핑 모델에 기초한 3차원 영상의 평면기반 컴퓨터 집적 영상 재생 방식)

  • Shin, Dong-Hak;Kim, Nam-Woo;Lee, Joon-Jae;Kim, Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.991-996
    • /
    • 2007
  • Recently, a computational reconstruction method using an integral imaging technique, which is a promise three-dimensional display technique, has been actively researched. This method is that 3-D images can be digitally reconstructed at the required output planes by superposition of all of the inversely enlarged elemental images by using a hypothetical pinhole array model. However, the conventional method mostly yields reconstructed images having a low-resolution, because there are some intensity irregularities with a grid structure at the reconstructed mage plane by using square-type elemental images. In this paper, to overcome this problem, we propose a novel computational integral imaging reconstruction (CIIR) method using round-type mapping model. Proposed CIIR method can overcome problems of non-uniformly reconstructed images caused from the conventional method and improve the resolution of 3-D images. To show the usefulness of the proposed method, both computational experiment and optical experiment are carried out and their results are presented.

Development of Line Density Index for the Quantification of Oceanic Thermal Fronts (해양의 수온전선 정량화를 위한 선밀도 지수 개발)

  • Cho, Hyun-Woo;Kim, Kye-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.227-238
    • /
    • 2006
  • Line density index(LDI) was developed to quantify a densely isothermal line rate as standard index in the ocean environment. Theoretical background on the LDI development process restricting index range 0 to 100 was described. And validation test was done for the LDI application condition that total line length is not greater than 1/10 of unit area. NOAA SST(Sea Surface Temperature) data were used for the experimental application of LDI in the South Sea of Korea. Using GIS, $0.1^{\circ}C$ isothermal lines were linearized as vector data form SST raster data, and unit area were built as polygon data. For the LDI calculation, spatial overlapping(line in polygon) was implemented. To analyze the effect of unit area size for the LDI distribution, two cases of unit area size were designed and descriptive statistics was calculated including performing normality test. The results showed no change of LDI's essential characteristics such as mean and normality except for the range of value, variance and standard deviation. Accordingly, it was found that complex structure of thermal front and even smaller scale of front width than unit area size could influence on the LDI distribution. Also, correlation analysis performed between LDI and difference of temperature(${\Delta}T^{\circ}C$), and horizontal thermal gradient(${\Delta}T^{\circ}C/km$) on the front was obtained from linear regression model. This obtained value was compared with the results from previous researches. Newly developed LDI can be used to compare the thermal front regions changing spatio-temporally in the ocean environment using absolute index value. It is considered to be significant to analyze the relationship between thermal front and marine environment or front and marine organisms in a quantitative approach described in this study.

  • PDF

Evaluation of Flutter Velocity of Bridge Deck Section using Distributed Computing Environment (분산형 전산환경을 활용한 교량 거더의 플러터 발생풍속 산정)

  • Lee, Kuen-Bae;Kim, Chongam
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.75-75
    • /
    • 2011
  • 본 논문에서는 진동중인 교량 거더에 작용하는 풍하중을 산정하고 그에 따른 플러터 발생풍속을 예측하기 위하여 분산형 전산환경을 활용한 수치해석 연구를 수행하였다. 분산형 전산환경은 웹 포탈을 기반으로 수치해석 환경을 제공하는 수치풍동 시스템으로서, 전산유체역학(CFD : Computational Fluid Dynamics)에 대한 전문지식이 부족한 사용자들도 격자생성, 수치해석자를 이용한 계산, 가시화 등의 전 과정을 편리하게 수행할 수 있는 차세대 토목분야 연구 환경이다. 본 시스템은 그리드스피어(GfidSphere)를 기반으로 구성되었으며, 기본적으로 사용자 관리, 세션 관리, 그룹 관리, 레이아웃 관리 등을 제공하여 사용자가 포탈을 통해서 다양한 서비스를 쉽게 사용할 수 있는 환경을 구축하도록 도와준다. 수치해석을 위한 유체 지배방정식은 2차원 비정상 비압축성 RANS(Reynolds-Averaged Navier-Stokes) 방정식이며, pseudo compressibility 방법을 적용하였다. 비정상 유동장을 해석하기 위하여 이중시간 전진법(dual time stepping)을 사용하였으며, 수렴가속화를 위해 Multi-grid 기법을 적용하였다. 또한 난류 유동장 해석을 위해서 $k-{\omega}$ SST 난류 모델을 사용하였으며, 난류 천이 과정에서의 유동을 모사하기 위하여 Total stress limitation 방법을 적용하였다. 교량 거더의 연직과 회전방향의 2자유도 움직임을 모사하기 위하여 동적격자 기법을 도입하였다. 교량 거더 주변의 비정상 유동해석 결과를 통해, 거더 표면에서 떨어져나가는 크고 작은 와류의 영향으로 양력 및 모멘트 계수 그래프가 중첩된 진폭과 주기를 갖고 주기적으로 나타나는 것을 확인할 수 있었다. 또한 계산된 비정상 공기력을 적용한 2자유도 플러터 방정식을 통하여 플러터 발생풍속을 산정하였다. 최종적으로 본 연구에서 계산된 결과의 타당성을 검증하기 위하여 수치적으로 구한 플러터 발생풍속과 기존의 실험 및 수치해석 결과를 비교하였으며, 결과는 잘 일치하였다.

  • PDF

Minimizing Redundant Route Nodes in USN by Integrating Spatially Weighted Parameters: Case Study for University Campus (가중치가 부여된 공간변수에 의거하여 USN 루트노드 최소화 방안 -대학 캠퍼스를 사례로-)

  • Kim, Jin-Taek;Um, Jung-Sup
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.6
    • /
    • pp.788-805
    • /
    • 2010
  • The present USN (Ubiquitous Sensor Networks) node deployment practices have many limitations in terms of positional connectivity. The aim of this research was to minimize a redundancy of USN route nodes, by integrating spatially weighted parameters such as visibility, proximity to cell center, road density, building density and cell overlapping ratio into a comprehensive GIS database. This spatially weighted approach made it possible to reduce the number of route nodes (11) required in the study site as compared to that of the grid network method (24). The field test for RSSI (Received Signal Strength Indicator) indicates that the spatially weighted deployment could comply with the quality assurance standard for node connectivity, and that reduced route nodes do not show a significant degree of signal fluctuation for different site conditions. This study demonstrated that the spatially weighted deployment can be used to minimize a redundancy of USN route nodes in a routine manner, and the quantitative evidence removing a redundancy of USN route nodes could be utilized as major tools to ensure the strong signal in the USN, that is frequently encountered in real applications.

Steady and Unsteady State Characteristics of Length Effects about Linear Pintle Nozzle (직선형 핀틀 노즐의 길이비에 따른 정상상태와 비정상상태 특성 연구)

  • Jeong, Kiyeon;Kang, Dong-Gi;Jung, Eunhee;Lee, Daeyeon;Kim, Dukhyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.28-39
    • /
    • 2018
  • In this study, numerical simulations were performed for steady and unsteady state characteristics of length effects on linear pintle nozzles using the overset grid method. Nozzles and pintles are created separately by an auto grid generation program to use the overset grid method. Appropriate turbulent models and numerical methods are selected for the validation of simulations. Pintle shapes are chosen from five types, with differences in the ratio of length and diameter. The longer the pintle length, the greater the thrust and thrust coefficient. The chamber pressure tendency of steady-state and unsteady-state are different for various pintle velocities. The thrust of the nozzle exit responds to changes in the nozzle throat in the unsteady-state, and the speed of pressure propagation wave generated by movement of the pintle is considered to predict the major factor of performance.

Numerical Analysis of Wave Impact Forces in Numerical Wave Basin (수치파 수조를 이용한 파랑 충격력 수치해석)

  • Shin, Young-Seop;Hong, Key-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.205-210
    • /
    • 2006
  • The impact forces of the highly nonlinear waves are one of the important factors in designing the ocean structures. The impact forces are very difficult to analyze numerically and experimentally because they are impulsive in magnitude and occur instantaneously. In this study the numerical program based on N.S. equations are used to investigate the impact forces of steep waves where the waves are gene rated by the wave maker in the numerical wave basin. The arbitrary steep waves are generated by the superposition of waves of single frequency and the impact forces on vertical cylinder are simulated on the multiblock grids. V.O.F. and the local height function methods are used to track the free surfaces. To validate the numerical analysis the numerical results are compared with the experimental ones and the acceptable agreements are found. It is thought that more studies on the simulations of the incoming breaking waves and the impact forces on the vertical cylinder should be made to obtain the useful results to be applied in the offshore design.

  • PDF

Dynamic Characteristics of Pintle Nozzle about Changes of Chamber Boundary Condition (연소실 경계조건 변화에 따른 핀틀 노즐의 동특성 연구)

  • Jeong, Kiyeon;Kang, Dong-Gi;Lee, Daeyeon;Choi, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.22-31
    • /
    • 2018
  • In this study, numerical simulations were performed to determine the dynamic characteristics of a pintle nozzle, with changes to the chamber boundary conditions. To apply movement, to the pintle, the nozzle and pintle were created separately by an auto-grid generation program using an overset grid method. The chamber boundary conditions were selected between a constant mass-flow rate condition and a propellant burn-back condition. The pressure and thrust characteristics of the constant mass-flow rate condition were determined by changing the ratio of the mass-flow rate in the inlet. The propellant burn-back condition was considered by formulation of the combustion rate. The burn-back conditions represented nonlinear phenomena, unlike the constant mass flow rate, and a small flow rate resulted in a large change in the chamber pressure.

Evaluating Vulnerability to Snowfall Disasters Using Entropy Method for Overlapping Distributions of Vulnerable Factors in Busan, Korea (취약인자의 엔트로피 기반 중첩 분석을 이용한 부산광역시의 적설재해 취약지역 등급 평가)

  • An, ChanJung;Park, Yongmi;Choi, Wonsik
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.217-229
    • /
    • 2020
  • Recently, weather changes in Korea have intensified due to global warming, and the five major natural disasters that occur mostly include heavy rains, typhoons, storms, heavy snow, and earthquakes. Busan is vulnerable to snow disaster, given that the amount of natural disaster damage in Busan accounts for more than 50% of the total amount in the entire metropolitan cities in Korea, and that the Busan area includes many hilly mountains. In this study, we attempted to identify vulnerable areas for snowfall disasters in Busan areas using the geographic information system (GIS) with the data for both geographical and anthropogenic characteristics. We produced the maps of vulnerable areas for evaluating factors that include altitude, slope, land cover, road networks, and demographics, and overlapped those maps to rank the vulnerability to snowfall disasters as the 5th levels finally. To weight each evaluating factor, we used an entropy method. The riskiest areas are characterized by being located in mountainous areas with roads, including Sansung-ro in Geumjeong-gu, Mandeok tunnel in Buk-gu, Hwangnyeongsan-ro in Suyeong-gu, and others, where road restrictions were actually enforced due to snowfall events in the past. This method is simple and easy to be updated, and thus we think this methodology can be adapted to identify vulnerable areas for other environmental disasters.