• Title/Summary/Keyword: 중첩격자

Search Result 147, Processing Time 0.034 seconds

DEVELOPMENT OF AN UNSTRUCTURED OVERSET MESH METHOD FOR 2-D UNSTEADY VISCOUS FLOW ANALYSIS (이차원 비정상 점성 유동 해석을 위한 비정렬 중첩격자기법 개발)

  • Jung M. S.;Kwon O. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.135-139
    • /
    • 2005
  • An unstructured overset mesh method has been developed for the simulation of unsteady viscous flow fields around multiple bodies in relative motion. For this purpose, a robust and fast search technique is proposed for both triangle and high-aspect quadrilateral cell elements. The interpolation boundary is defined for data communication between grid systems and an interpolation method is suggested for viscous and inviscid cell elements. This method has been applied to calculate the flow fields around 2-D airfoil including relative motion. Validation were made by comparing the predicted results with those of experiments or other researcher's numerical results. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

  • PDF

DEVELOPMENT OF AN UNSTRUCTURED OVERSET MESH METHOD FOR 2-D UNSTEADY VISCOUS FLOW SIMULATION WITH RELATIVE MOTION (상대운동이 있는 이차원 비정상 점성 유동 해석을 위한 비정렬 중첩격자기법 개발)

  • Jung Mun-Seung;Kwon Oh-Joon
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.1-7
    • /
    • 2006
  • An unstructured overset mesh method has been developed for the simulation of unsteady viscous flow fields around multiple bodies in relative motion. For this purpose, a robust and fast search technique is proposed for both triangle and high-aspect ratio quadrilateral cell elements. The interpolation boundary is defined for data communication between grid systems and an interpolation method is suggested for viscous and inviscid cell elements. This method has been applied to calculate the flow fields around 2-D airfoils involving relative motion. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

Numerical Study on Transient Aerodynamics of Moving Flap Using Conservative Chimera Grid Method (보존적 중첩격자기법을 이용한 동적 플랩의 천이적 공력거동에 관한 수치적 연구)

  • Choi S. W.;Chang K. S.;Kim I. S.
    • Journal of computational fluids engineering
    • /
    • v.5 no.2
    • /
    • pp.9-19
    • /
    • 2000
  • Transient aerodynamic response of an airfoil to a moving plane-flap is numerically investigated using the two-dimensional Euler equations with conservative Chimera grid method. A body moving relative to a stationary grid is treated by an overset grid bounded by a 'Dynamic Domain Dividing Line' which has an advantage for constructing a well-defined hole-cutting boundary. A conservative Chimera grid method with the dynamic domain-dividing line technique is applied and validated by solving the flowfield around a circular cylinder moving supersonic speed. The unsteady and transient characteristics of the flow solver are also examined by computations of an oscillating airfoil and a ramp pitching airfoil respectively. The transient aerodynamic behavior of an airfoil with a moving plane-flap is analyzed for various flow conditions such as deflecting rate of flap and free stream Mach number.

  • PDF

APPLICATION OF MOVING LEAST SQUARE METHOD IN CHIMERA GRID METHOD (중첩격자에 대한 이동최소자승법 적용 연구)

  • Lee, K.;Lee, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.17-22
    • /
    • 2007
  • Chimera grid Method is widely used in Computational Fluid Dynamics due to its simplicity in constructing grid system over complex bodies. Especially, Chimera grid method is suitable for unsteady flow computations with bodies in relative motions. However, interpolation procedure for ensuring continuity of solution over overlapped region fails when so-call orphan cells are present. We have adopted MLS(Moving Least Squares) method to replace commonly used linear interpolations in order to alleviate the difficulty associated with orphan cells. MSL is one of interpolation methods used in mesh-less methods. A number of examples with MLS are presented to show the validity and the accuracy of the method.

  • PDF

Ground Effect of a Rotor Blade on a Whirl Tower (훨타워 로터 블레이드의 지면효과)

  • Kang, Hee-Jung;Kim, Seung-Ho
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.74-81
    • /
    • 2011
  • A numerical simulation is performed to study the ground effect of a rotating rotor blade on a whirl tower using unstructured overset mesh. The aerodynamic change of the rotor blade by the structure around the whirl tower is also considered. The calculated results showed good agreement with the experiment for the hover performance. The ground effect of the rotor blade is investigated by comparing with the calculated results for the out of ground condition and the results of an analytic model.

전진익 소형기의 전산유동해석

  • Choi, Seong-Wook;Kim, Eung-Tai
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.1-10
    • /
    • 2002
  • Flow computations around forward sweep wing small aircraft have been conducted in this study. The main-wing of the forward-wing small aircraft is composed of two planforms: the inboard wing section with backward sweep angle which is known as strake and the outboard wing section with forward sweep angle. The geometrical discontinuity or kink generated by the combination of these two different planforms requires detailed flow analysis around wing. Four different solvers were used to calculate aerodynamic data and the accuracy of each method is examined. For the convenience of grid generation over the aircraft geometry, the overset grid method was applied. Through this calculation, the basic aerodynamic data of the forward-wing aircraft were provided and the aerodynamic characteristics of the wing is expounded.

  • PDF

Numerical simulation of a double dam break driven swash using an overset dynamic mesh capability of OpenFOAM (OpenFOAM overset 동격자 기법을 활용한 이중 댐 붕괴 파랑수치모형실험)

  • Ju Hee Ok;Yeulwoo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.222-222
    • /
    • 2023
  • 오픈 소스 유체역학 소프트웨어인 OpenFOAM은 다양한 유체 흐름에 적용 가능한 프로그램들로 구성되어 있다. 이 중 interFoam은 밀도가 다른 두 유체(i.e., 물, 공기) 간의 경계를 추적하는 기법을 기반으로 한 프로그램으로, 파랑의 거동 모의에 주로 쓰이고 있다. 파생형 프로그램으로는 동격자(dynamic mesh) 및 중첩 격자 기법(overset grid method)을 interFoam에 추가한 overInterDyMFoam이 있다. 두 기법을 사용하면 각각 여러 영역에서 유체흐름과 다중 물체 간의 상호작용을 효율적으로 모의할 수 있다. 본 연구에서는 overInterDyMFoam을 사용하여 두 개 수문의 개방 움직임을 구현하고 생성된 파랑이 포말대(swash zone)에 접근하였을 때의 흐름 특성을 조사하였다. 수치모형실험 결과 수문 개방 속도가 댐 붕괴 파랑 흐름 전파속도에 영향을 미치는 사실을 발견하였다. 또한, 처오름과 처내림의 상호작용에 의한 난류 운동 특성을 조사하기 위해 수문 개방시간 간격을 0초~3초로 설정하였다. 수치모형실험 결과는 수리모형실험의 수면 변동 시계열과 속도 시계열 결과와 비교하여 모형의 정확성이 검증되었다.

  • PDF

Added Resistance and 2DOF Motion Analysis of KVLCC2 in Regular Head Waves using Dynamic Overset Scheme (동적 중첩격자 기법을 이용한 KVLCC2의 파랑중 부가저항 및 2자유도 운동 해석)

  • Kim, Yoo-Chul;Kim, Yoonsik;Kim, Jin;Kim, Kwang-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.385-393
    • /
    • 2018
  • In this study, the analysis of 2DOF (2 Degree Of Freedom) motion and added resistance of a ship in regular head waves is carried out using RANS (Reynolds Averaged Navier-Stokes) approach. In order to improve the accuracy for large amplitude motions, the dynamic overset scheme is adopted. One of the dynamic overset schemes, Suggar++ is applied to WAVIS which is the in-house RANS code of KRISO (Korea Research Institute of Ships and Ocean Engineering). The grid convergence test is carried out using the present scheme before the analysis. The target hull form is KRISO VLCC tanker (KVLCC2) and 13 wave length conditions are applied. The present scheme shows the improved results comparing with the results of WAVIS2 in the non-inertial reference frame. The dynamic overset scheme is confirmed to give the comparatively better results for the large amplitude motion cases than the non-inertial frame based scheme.

Efficient Hole Searching Algorithm for the Overset Grid System with Relative Body Motion (상대운동이 있는 중첩격자계에 효율적인 Hole Searching Algorithm 개발)

  • Lee, Seon-Hyeong;Chae, Sang-Hyun;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.995-1004
    • /
    • 2011
  • Object X-ray method commonly used for hole search in overset grids requires huge amount of time due to complicated vector calculations to search the cross-points as well as time-consuming hole search algorithm with respect to background grids. Especially, when the grid system is in motion relative to the background, hole points should be searched at every time step, leading to hung computational burden. To cope with this difficulties, this study presents an efficient hole search algorithm mainly designed to reduce hole searching time. To this end, virtual surface with reduced grid points is suggested and logical operators are employed as a classification algorithm instead of complicated vector calculations. In addition, the searching process is further accelerated by designating hole points in a row rather than discriminating hole points with respect to each background grid points. If there exists a relative motion, the present algorithm requires much less time because only the virtual surface needs to be moved at every time step. The hole searching time has been systematically compared for a few selected geometries.

Flood risk assessment for local government units in Gyeonggi-do using the number of buildings grid data (건축물수 격자자료를 활용한 경기도 지자체별 홍수위험도 평가)

  • Wang, Won-joon;Seo, Jae Seung;Eom, Junghyun;Kim, Sam Eun;Kim, Hung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.71-71
    • /
    • 2021
  • 현재 국내에서 사용되고 있는 지자체 단위 위험도 평가 기법들은 자연재난과 사회재난으로부터 유발되는 여러 위험성들을 함께 고려하여 평가에 반영하고 있다. 또한, 지자체 내에서 홍수위험에 노출될 수 있는 대상만을 선별하여 분석한 것이 아닌 지자체별 단순 통계값으로 평가가 이루어지기 때문에 홍수위험에 대한 정확한 평가가 어렵다는 한계를 가지고 있다. 따라서 본 연구에서는 Indicator Based Approach(IBA)에서 제시하는 평가 항목인 Hazard, Exposure, Vulnerability, Capacity 중 Exposure에 해당하는 건축물수를 대상으로 홍수위험지도와 중첩되는 건축물들을 선별하여 홍수위험도 평가를 수행하였다. 지자체별 건축물수 산정은 2018년 11월 기준 경기도 31개 시군별 도로명주소 전자지도(건물)와 500m × 500m 건축물수 격자자료를 사용하였다. 건축물수 격자자료는 도로명주소 전자지도의 건물 폴리곤 자료 대비 분석이 간편하다는 장점을 가지고 있다. 비교 분석을 통해 공간분석자료의 유형에 따라 발생하는 통계값의 차이는 격자자료에 보정계수를 적용하여 보완하였다. 보정된 경기도 지자체별 건축물수 격자자료로 세부지표 지수를 산정한 결과 단순히 자지체별 건축물수를 사용했을 때에는 화성시, 용인시, 평택시 순으로 지수가 크게 산정되었다, 하지만 홍수위험지도와 중첩된 건축물수를 사용했을 때에는 고양시, 광명시, 김포시 순으로 지수가 크게 산정되었다. 본 연구를 통해서 건축물수 격자자료와 홍수위험지도를 사용하여 위험도 평가를 수행했을 때 기존 방법론 대비 합리적인 평가결과를 얻을 수 있었다.

  • PDF