• Title/Summary/Keyword: 중저준위방사성폐기물 처분시설

Search Result 37, Processing Time 0.03 seconds

Multiple-Silo Performance Assessment Model for the Wolsong LILW Disposal Facility in Korea - PHASE I: Model Development (월성 중저준위 처분시설 다중사일로 안정성 평가 모델 - 1단계: 모델개발)

  • Lim, Doo-Hyun;Kim, Jee-Yeon;Park, Joo-Wan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.99-105
    • /
    • 2011
  • An integrated model for groundwater flow and radionuclide transport analyses is being developed incorporating six underground silos, an excavated damaged zone (EDZ), and fractured host rock. The model considers each silo as an engineered barrier system (EBS) consisting of a waste zone comprising waste packages and disposal container, a buffer zone, and a concrete lining zone. The EDZ is the disturbed zone adjacent to silos and construction & operation tunnels. The heterogeneity of the fractured rock is represented by a heterogeneous flow field, evaluated from discrete fractures in the fractured host rock. Radionuclide migration through the EBS in silos and the fractured host rock is simulated on the established heterogeneous flow field. The current model enables the optimization of silo design and the quantification of the safety margin in terms of radionuclide release.

Radiological Impact Assessment for the Domestic On-road Transportation of Radioactive Isotope Wastes (방사성동위원소 폐기물의 국내육상운반에 관한 방사선영향 평가)

  • Seo, Myunghwan;Hong, Sung-Wook;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.279-287
    • /
    • 2016
  • Korea Radioactive Waste Agency (KORAD) began to operate the low and intermediate level radioactive waste disposal facility in Gyeongju and to transport the radioactive waste containing radioactive isotopes from Daejeon to the disposal facility for the first time at 2015. For this radioactive waste transportation, in this study, radiological impact assessment is carried out for workers and public. The dose rate to workers and public during the transportation is estimated with consideration of the transportation scenarios and is compared with the Korean regulatory limit. The sensitivity analysis is carried out by considering both the variation of release ratios of the radioactive isotopes from the waste and the variation of the distances between the radioactive waste drum and worker during loading and unloading of radioactive waste. As for all the transportation scenarios, radiological impacts for workers and public have met the regulatory limits.

A natural analog study on the cover-layer performance for near-surface LILW disposal by considering the tomb of historical age (역사시대 고분을 이용한 중저준위 방사성폐기물의 천층처분 덮개성능 자연유사연구)

  • Park Jin-Beak;Park Joo Wan;Kim Chang-Lak;Yang Si Eun;Lee Sun Bok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.279-291
    • /
    • 2005
  • To support the design concept and the performance assessment of the cover system for low- and intermediate-level radioactive waste(LILW) disposal facility, a pioneering study is conducted for the tomb of historical age. Research status of the art are investigated and the characteristics of tomb cover are summarized based on the preservation status of historical remains. On-site soil samples are prepared and their unsaturated hydraulic conductivities are measured by an one-step outflow method. Visiting the excavation site of historical tomb and communication with Korean archeological society are required for the further understanding and for the extension to the radioactive waste disposal research.

  • PDF

Prediction of Radionuclide Inventory for Low- and Intermediate-Level Radioactive Waste by Considering Concentration Limit of Waste Package (처분방사능량제한치를 고려한 중저준위 방사성폐기물 처분시설의 핵종재고량 산정(안))

  • Jung, Kang Il;Kim, Min Seong;Jeong, Noh Gyeom;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.65-82
    • /
    • 2017
  • The result of a preliminary safety assessment that was completed by applying the radionuclide inventory calculated on the basis of available data from radioactive waste generation agencies suggested that many difficulties are to be expected with regard to disposal safety and operation. Based on the results of the preliminary safety assessment of the entire disposal system, in this paper, a unit package exceeding the safety goal is selected that occupies a large proportion of radionuclides in intermediate-level radioactive waste. We introduce restrictions on the amount of radioactivity in a way that excludes the high surface dose rate of the package. The radioactivity limit for disposal will be used as the baseline data for establishing the acceptance criteria and the disposal criteria for each disposal facility to meet the safety standards. It is necessary to draw up a comprehensive safety development plan for the Gyeongju waste disposal facility that will contribute to the construction of a Safety Case for the safety optimization of radioactive waste disposal facilities.

Status of Researches of Excavation Damaged Zone in Foreign Underground Research Laboratories Constructed for Developing High-level Radioactive Waste Disposal Techniques (고준위방사성폐기물 처분 기술개발을 위해 건설된 해외 지하연구시설에서의 암반손상대 연구 현황)

  • Park, Seunghun;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.35 no.3
    • /
    • pp.31-54
    • /
    • 2017
  • In the countries operating nuclear reactors, the development of high-level radioactive waste(HLW) disposal technique is considered as an urgent and important issue for sustainable utilization of nuclear energy. In Korea, in which a low and intermediate radioactive waste repository is already operating, the construction of an underground research laboratory for in situ validation studies became a matter of interest with increasing concerns on the management of HLW. In order to construct and to operate an underground HLW repository safely in deep underground, the stability of rock mass should be guaranteed. As an important factor on rock stability, excavation damaged zone (EDZ) has been studied in many underground research laboratories in foreign countries. For accurate evaluation of the characteristics and effects of EDZ under disposal condition, it is required to use reliable investigation method based on the analysis of previous studies in similar conditions. In this study, status of foreign underground research laboratories in other countries, approaches for investigation the characteristics, size, and effect of EDZ, and major findings from the researches were surveyed and reported. This will help the accomplishment of domestic researches for developing HLW management techniques in underground research laboratory.

Gas Migration in Low- and Intermediate-Level Waste (LILW) Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설 폐쇄후 기체이동)

  • Ha, Jaechul;Lee, Jeong-Hwan;Jung, Haeryong;Kim, Juyub;Kim, Juyoul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.267-274
    • /
    • 2014
  • The first Low- and Intermediate-Level Waste (LILW) disposal facility with 6 silos has been constructed in granite host rock saturated with groundwater in Korea. A two-dimensional numerical modeling on gas migration was carried out using TOUGH2 with EOS5 module in the disposal facility. Laboratory-scale experiments were also performed to measure the important properties of silo concrete related with gas migration. The gas entry pressure and relative gas permeability of the concrete was determined to be $0.97{\pm}0.15bar$ and $2.44{\times}10^{-17}m^2$, respectively. The results of the numerical modeling showed that hydrogen gas generated from radioactive wastes was dissolved in groundwater and migrated to biosphere as an aqueous phase. Only a small portion of hydrogen appeared as a gas phase after 1,000 years of gas generation. The results strongly suggested that hydrogen gas does not accumulate inside the disposal facility as a gas phase. Therefore, it is expected that there would be no harmful effects on the integrity of the silo concrete due to gas generation.

Logical Analysis for Parameters of Radioactive waste Policy using System Dynamics Technique (시스템 다이내믹스 모델링을 통한 중.저준위방사성폐기물시설 부지선정 영향 인자 분석)

  • Lee, Y.J.;Cho, S.K.
    • Journal of Energy Engineering
    • /
    • v.17 no.2
    • /
    • pp.77-87
    • /
    • 2008
  • Decision-making of the site for the medium and low-level radioactive-waste disposal facilities in 2005 can be estimated as a success. But the limits exposed during the process still remain as problems to be solved. Analyzing the causes of success and failure of the policy and their correlation was expected to provide an effective guideline on future policies. The analysis shows that the transparency of policy makers, the level of community supports and the public relations are decisive factors. System dynamics, a synthetic analyzing tool, is used as a methodology for policy analysis. The result of the system dynamics analysis shows that public confidence is to be the key role to for and against logics when transparency of stakeholder, subsidy and public information are set as adjustable parameters. Public confidence takes a role of leverage that can convert tendency of conclusion by the opinion which influenced by selected parameters.

Safety Assessment for LILW Near-Surface Disposal Facility Using the IAEA Reference Model and MASCOT Program (IAEA의 기준모델과 MASCOT 프로그램을 이용한 중저준위방사성폐기물 천층처분시설 안전성평가)

  • Kim, Hyun-Joo;Park, Joo-Wan;Kim, Chang-Lak
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.2
    • /
    • pp.111-120
    • /
    • 2002
  • A reference scenario of vault safety case prepared by the IAEA for the near-surface disposal facility of low-and informed]ate-level radioactive wastes is assessed with the MASCOT program. The appropriate conceptual models for the MASCOT implementation is developed. An assessment of groundwater pathway through a drinking well as a geosphere-biosphere interface is performed first. then biosphere pathway is analysed to estimate the radiological consequences of the disposed radionuclides based on compartment modeling approach. The validity of conceptual modeling for the reference scenario is investigated where possible comparing to the results generated by the other assessment. The result of this study shows that the typical conceptual model for groundwater pathway represented by the compartment model ran be satisfactorily used for safety assessment of the entire disposal system in a cons]stent way. It is also shown that safety assessment of a disposal facility considering complex and various pathways would be possible by the MASCOT program.

Hydrogeological Site Monitoring in Low and Intermediate Level Radioactive Waste Disposal Facilities (중·저준위 방사성 폐기물 처분시설의 부지 감시 현황)

  • Chung-Mo Lee;Soon Il OK;Seongyeon Jung;Sieun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.17-17
    • /
    • 2023
  • 국내의 부지특성 및 감시 관련 규정은 원자력 안전위원회 고시 제2021-16호 제4조(세부지침)와 원자력 안전위원회 고시 제2021-17호 제16조에 의거하고, 국외는 국제원자력기구(IAEA: International Atomic Energy Agency)에서 안전기준을 제시하고 있다(IAEA, 2011). 따라서 국내 중·저준위 방사성폐기물 처분시설은 2006년부터 광역 지질을 포함한 부지 지질/지형, 기상, 수문, 수리지질, 인문사회 등을 망라한 조사를 시행하여 부지 현황에 대한 분석 및 안정성 평가를 수행한다. 부지감시의 수문·지구화학 분야에서는 현장 수질 측정 6항목과 실내 분석 26항목을 감시하고 있으나, 본 연구는 이 중 9개 항목(EC, Na, K, Ca, Mg, SiO2, Cl, SO4, HCO3)을 선정하여 분석하였다. 연구 목적은 물시료 분석자료의 주성분-다중선형회귀-군집 분석과 Piper Diagram 분석결과로부터 해수와 담수(지하수)와의 특성분석 및 해수 영향을 분석하는 것이다. 현장 부지내 지하수 7개 관정(GM-1, 2, 4, 5, 6, 7, 8)과 해수 2개 지점(Sea-1, 2)을 대상으로 통계학적 주성분 분석결과, 대부분의 지하수는2개~4개의 요인으로 구분되고, 해수와의 유사성을 해석하기 위해 확인한 관정은 GM-5, GM-6, GM-1 지점으로 분류되었다. 상기와 같이 해수의 영향을 확인하기 위해 해수 2개 지점과 동일한 군집으로 분류되는 지하수는 GM-5 관정으로 확인되었고, 해안선에서 가까운 GM-5 관정과 같이 유사한 거리에 분포한 지하수 GM-1, 2, 4 관정은 2개 혹은 3개의 최적 군집으로 분류하였을 때도 GM-5와는 다른 특성을 보여주었다. 이는 해안과 인접하더라도 수질은 다른 지질학적 특성(지형, 기상, 단열대 등)에 따라 영향받았음을 지시한다.

  • PDF

Safety Assessment of Near Surface Disposal Facility for Low- and Intermediate-Level Radioactive Waste (LILW) through Multiphase-Fluid Simulations Based on Various Scenarios (다양한 시나리오 기반 유체거동 수치모사를 통한 중·저준위 방사성 폐기물 표층처분시설 안전성 평가)

  • Jeong, Jina;Kown, Mijin;Park, Eungyu
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.131-147
    • /
    • 2018
  • In the present study, the safety of the near surface disposal facility for low- and intermediate-level radioactive waste (LILW) is examined based on the fluid-flow simulation model. The effects of the structural design and hydrological properties of the disposal system are quantitatively evaluated by estimating the flux of infiltrated water at the boundary of the structure. Additionally, the safety margins of the disposal system, especially for the cover layer and vault, are determined by applying the various scenarios with consideration of possible facility designs and precipitation conditions. The overall results suggest that the disposal system used in this study is sufficiently suitable for the safe operation of the facility. In addition, it is confirmed that the soundness of both the cover layer and the vault have great impact on the safety of the facility. Especially, as shown in the vault degradation scenario, capability of the concrete barrier of the vault make more positive contribution on the safe operation of the facility compared to that of the cover layer.