• 제목/요약/키워드: 중요문장 추출

검색결과 152건 처리시간 0.029초

문장 수준 관계 추출을 위한 개체 중심 구문 트리 기반 모델 (Entity-centric Dependency Tree based Model for Sentence-level Relation Extraction)

  • 박성식;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.235-240
    • /
    • 2021
  • 구문 트리의 구조적 정보는 문장 수준 관계 추출을 수행하는데 있어 매우 중요한 자질 중 하나다. 기존 관계 추출 연구는 구문 트리에서 최단 의존 경로를 적용하는 방식으로 관계 추출에 필요한 정보를 추출해서 활용했다. 그러나 이런 트리 가지치기 기반의 정보 추출은 관계 추출에 필요한 어휘 정보를 소실할 수도 있다는 문제점이 존재한다. 본 논문은 이 문제점을 해소하기 위해 개체 중심으로 구문 트리를 재구축하고 모든 노드의 정보를 관계 추출에 활용하는 모델을 제안한다. 제안 모델은 TACRED에서 F1 점수 74.9 %, KLUE-RE 데이터셋에서 72.0%로 가장 높은 성능을 보였다.

  • PDF

단락 자동 구분을 이용한 문서 요약 시스템 (Korean Summarization System using Automatic Paragraphing)

  • 김계성;이현주;이상조
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권7_8호
    • /
    • pp.681-686
    • /
    • 2003
  • 본 논문은 단락의 자동 구분을 통해 중요한 문장을 추출하는 요약 시스템을 제안한다. 먼저 어휘의 재출현 여부를 파악하여 어휘의 일치도와 어휘의 역할 변화와 같은 재출현 어휘의 양상 정보를 수집하고, 이를 통하여 문장 간의 긴밀도를 정량적으로 계산한다. 다음으로 측정된 문장간 긴밀도를 이용하여 사용자의 추출 범위에 따라 단락을 구분하고, 각 단락의 대표 문장을 선정하여 최종 요약문을 추출한다. 제안한 방법은 문서 제목, 문장의 위치, 수사 구조 등의 정보를 이용하지 않기 때문에 수사 구조가 자주 발견되지 않는 문서에도 적용이 가능하다.

의미적으로 확장된 문장 간 유사도를 이용한 한국어 텍스트 자동 요약 (Korean Text Automatic Summarization using Semantically Expanded Sentence Similarity)

  • 김희찬;이수원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.841-844
    • /
    • 2014
  • 텍스트 자동 요약은 수많은 텍스트 데이터를 처리함에 있어 중요한 연구 분야이다. 이중 추출요약은 현재 가장 많이 연구가 되고 있는 자동 요약 분야이다. 본 논문은 추출 요약의 선두 연구인 TextRank는 문장 간 유사도를 계산할 때 문장 내 단어 간의 의미적 유사성을 충분히 고려하지 못하였다. 본 연구에서는 의미적 유사성을 고려한 새로운 단어 간 유사도 측정 방법을 제안한다. 추출된 문장 간 유사도는 그래프로 표현되며, TextRank의 랭킹 알고리즘과 동일한 랭킹 알고리즘을 사용하여 실험적으로 평가하였다. 그 결과 문장 간 유사성을 고려할 때 단어의 의미적 요소를 충분히 고려하여 정보의 유실을 최소화하여야 한다는 것을 실험 결과로써 확인할 수 있었다.

신경망을 이용한 한국어 운율 발생에 관한 연구 (A Study on the Prosody Generation of Korean Sentences using Neural Networks)

  • 이일구;민경중;강찬구;임운천
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1999년도 학술발표대회 논문집 제18권 1호
    • /
    • pp.65-69
    • /
    • 1999
  • 합성단위, 합성기, 합성방식 등에 따라 여러 가지 다양한 음성합성시스템이 있으나 순수한 법칙합성 시스템이 아니고 기본 합성단위를 연결하여 합성음을 발생시키는 연결합성 시스템은 연결단위사이의 매끄러운 합성계수의 변화를 구현하지 못해 자연감이 떨어지는 실정이다. 자연음에 존재하는 운율법칙을 정확히 구현하면 합성음의 자연감을 높일 수 있으나 존재하는 모든 운율법칙을 추출하기 위해서는 방대한 분량의 언어자료 구축이 필요하다. 일반 의미 문장으로부터 운율법칙을 추출하는 것이 바람직하겠으나, 모든 운율 현상이 포함된 언어자료는 그 문장 수가 극히 방대하여 처리하기 힘들기 때문에 가능하면 문장 수를 줄이면서 다양한 운율 현상을 포함하는 문장 군을 구축하는 것이 중요하다. 본 논문에서는 음성학적으로 균형 잡힌 고립단어 412 단어를 기반으로 의미문장들을 만들었다. 이들 단어를 각 그룹으로 구분하여 각 그룹에서 추출한 단어들을 조합시켜 의미 문장을 만들도록 하였다. 의미 문장을 만들기 위해 단어 목록에 없는 단어를 첨가하였다. 단어의 문장 내에서의 상대위치에 따른 운율 변화를 살펴보기위해 각 문장의 변형을 만들어 언어자료에 포함시켰다. 자연감을 높이기 위해 구축된 언어자료를 바탕으로 음성데이타베이스를 작성하여 운율분석을 통해 신경망을 훈련시키기 위한 목표패턴을 작성하였다 문장의 음소열을 입력으로 하고 특정음소의 운율정보를 발생시키는 신경망을 구성하여 언어자료를 기반으로 작성한 목표패턴을 이용해 신경망을 훈련시켰다. 신경망의 입력패턴은 문장의 음소열 중 11개 음소열로 구성된다. 이 중 가운데 음소의 운율정보가 출력으로 나타난다. 분절요인에 의한 영향을 고려해주기 위해 전후 5음소를 동시에 입력시키고 문장내에서의 구문론적인 영향을 고려해주기 위해 해당 음소의 문장내에서의 위치, 운율구에 관한 정보등을 신경망의 입력 패턴으로 구성하였다. 특정화자로 하여금 언어자료를 발성하게 한 음성시료의 운율정보를 추출하여 신경망을 훈련시킨 결과 자연음의 운율과 유사한 합성음의 운율을 발생시켰다.

  • PDF

그래프 분할을 이용한 문장 클러스터링 기반 문서요약 (Document Summarization Based on Sentence Clustering Using Graph Division)

  • 이일주;김민구
    • 정보처리학회논문지B
    • /
    • 제13B권2호
    • /
    • pp.149-154
    • /
    • 2006
  • 문서요약은 여러 개의 하위 주제로 구성되어 있는 문서에 대해 문서의 복잡도를 줄이면서 하위 주제를 모두 포함하는 요약문을 생성하는 것이 목적이다. 본 논문은 그래프 분할을 이용하여 하위 주제별로 중요 문장을 추출하는 요약시스템을 제안한다. 문장별 공기정보에 의한 단어의 연관성 분석을 통해 선정된 대표어를 이용하여 문서를 그래프로 표현한다. 그래프는 연결정보에 의해 하위 주제를 의미하는 부분 그래프로 분할되며 부분 그래프는 긴밀한 관계를 갖는 문장들이 클러스터링된 형태이다. 부분 그래프별로 중요 문장을 추출하면 하위 주제별 핵심 내용들로만 요약문을 구성하게 되어 요약 성능이 향상된다.

감정 자질을 이용한 한국어 문장 및 문서 감정 분류 시스템 (A Korean Sentence and Document Sentiment Classification System Using Sentiment Features)

  • 황재원;고영중
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권3호
    • /
    • pp.336-340
    • /
    • 2008
  • 최근 감정 분류에 대한 관심이 높아져 연구가 활발히 진행되고 있다. 문서 전체에 관한 감정의 분류도 중요하지만, 문서를 이루고 있는 문장에 관한 분류도 점차 그 필요성이 높아지고 있다. 본 논문에서는 한국어 감정 분류 시스템 구축을 위해서 추출된 한국어 감정 자질을 이용한 한국어 문장 및 문서 감정 분류에 관해 연구한다. 한국어 감정 분류의 시작은 감정을 내포한 대표적인 어휘로부터 시작하며, 이와 같은 감정 자질들은 문장 및 문서의 감정을 분류하는데 결정적인 관여를 한다. 한국어 감정 자질의 추출을 위하여 영어 단어 시소러스 정보를 이용하여 자질들을 확장하고, 영한사전을 통해 확장된 자질들을 번역함으로써 감정 자질들을 추출하였다. 추출된 감정 자질들을 사용하여, 단어 벡터로 표현된 입력문서를 이진 분류기인 지지벡터 기계(SVM: Support Vector Machine)를 이용하여 문장과 문서에 내포된 감정을 판단하고 평가하였다.

양방향 언어 모델을 활용한 자연어 텍스트의 시간 관계정보 추출 기법 (Temporal Relationship Extraction for Natural Language Texts by Using Deep Bidirectional Language Model)

  • 임채균;최호진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.81-84
    • /
    • 2019
  • 자연어 문장으로 작성된 문서들에는 대체적으로 시간에 관련된 정보가 포함되어 있을 뿐만 아니라, 문서의 전체 내용과 문맥을 이해하기 위해서 이러한 정보를 정확하게 인식하는 것이 중요하다. 주어진 문서 내에서 시간 정보를 발견하기 위한 작업으로는 시간적인 표현(time expression) 자체를 인식하거나, 시간 표현과 연관성이 있는 사건(event)을 찾거나, 시간 표현 또는 사건 간에서 발생하는 시간적 연관 관계(temporal relationship)를 추출하는 것이 있다. 문서에 사용된 언어에 따라 고유한 언어적 특성이 다르기 때문에, 만약 시간 정보에 대한 관계성을 고려하지 않는다면 주어진 문장들로부터 모든 시간 정보를 추출해내는 것은 상당히 어려운 일이다. 본 논문에서는, 양방향 구조로 학습된 심층 신경망 기반 언어 모델을 활용하여 한국어 입력문장들로부터 시간 정보를 발견하는 작업 중 하나인 시간 관계정보를 추출하는 기법을 제안한다. 이 기법은 주어진 단일 문장을 개별 단어 토큰들로 분리하여 임베딩 벡터로 변환하며, 각 토큰들의 잠재적 정보를 고려하여 문장 내에 어떤 유형의 시간 관계정보가 존재하는지를 인식하도록 학습시킨다. 또한, 한국어 시간 정보 주석 말뭉치를 활용한 실험을 수행하여 제안 기법의 시간 관계정보 인식 정확도를 확인한다.

  • PDF

커널 기반의 '단백질-단백질 작용' 의미 포함 문장 분류 (Kernel-based sentence classification for protein-protein interaction)

  • 김성환;엄재홍;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.286-288
    • /
    • 2005
  • 본 논문에서는 tree kernel을 이용 '단백질-단백질 작용' 내용 포함 문장의 추출 방법을 제시한다. Tree kernel은 convolution kernel의 하나로서, 이를 이용하여 파싱 트리(parsing tree)로 표현된 문장을 데이터로 하여 '단백질-단백질 작용' 내용을 포함하고 있는 문장을 그렇지 않은 문장으로부터 분류할 수 있다. 문장 전체를 데이터로 사용하는 것보다 관련 영역을 서브트리(sub-tree)로 추출하여 사용한 것이 더 효과적임을 확인할 수 있었고, kernel계산에 있어 파싱 트리의 태그 내용이 중요한 역할을 하기 때문에 이를 '단백질-단백질 작용'의 의미를 반영할 수 있도록 semantic하게 변환한 효과 및 트리의 길이에 따른 영향도 실험해 보았다. 문제에 사용된 데이터의 양이 다소 적었지만, 데이터 표현 방식에 따라 파싱이나 패턴기법을 이용한 기존의 방법과 비교해 좋은 성능을 보일 수 있다는 가능성을 확인할 수 있었다.

  • PDF

2단계 문장 추출 방법을 이용한 회의록 요약 (Meeting Minutes Summarization using Two-step Sentence Extraction)

  • 이재걸;박성배;이상조
    • 한국지능시스템학회논문지
    • /
    • 제20권6호
    • /
    • pp.741-747
    • /
    • 2010
  • 본 논문은 회의록의 특징을 반영한 회의록을 요약 방법을 제안한다. 회의록은 일반 문서와 달리 회의의 진행자가 전체 흐름을 주도하고, 회의 진행에 사용하는 단어들이 존재하며, 발언자들 간의 대화에 종속관계가 있다는 특징이 있다. 제안한 방법은 먼저 회의의 흐름을 찾기 위해 사전에 구축된 회의 진행에 특화된 단어사전과 TextRank 알고리즘을 사용하여 진행자의 주제 문장들을 추출한다. 다음으로 추출된 문장들을 회의록에 있는 참석자들의 문장과 유사도를 계산하여 회의의 주제 문장과 관련있는 중요 문장을 추출한다. 마지막으로 사용자가 흐름을 편히 알 수 있도록 추출된 문장들 사이에 종속 관계를 분석하여 최종적으로 회의록을 요약한다. 국회 전자회의록을 대상으로 실험한 결과, 제안한 방법이 회의록을 요약하는 비율 전 구간에서 기존의 요약 방법들보다 더 나은 성능을 보인다.

위키피디아로부터의 자동 병렬 문장 추출 기법을 이용한 영어-한국어 교차언어 정보검색의 번역 성능 개선 (Improving Query Translation by Extracting Parallel Sentences from Wikipedia for Cross-Language Information Retrieval)

  • 천주룡;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.35-40
    • /
    • 2015
  • 본 논문은 영어-한국어 교차언어 정보검색의 질의어 번역에 대한 중요한 자원으로 활용되는 병렬 말뭉치의 품질 향상을 위해서, 위키피디아의 비교 말뭉치로부터 자동으로 병렬 문장을 추출하여 활용하는 기법을 제안한다. 기존 연구에서 질의어 번역을 위해 위키피디아의 이중 어휘 사전 및 동의어, 다의어 정보를 구축하고, 기 기축된 병렬 말뭉치와 함께 활용하여 여러 의미를 가진 번역 후보 단어들 중, 최적의 단어를 선택하는 방법을 이용하고 있다. 여기서 활용되는 병렬 말뭉치는 질의어 번역에서 가장 중요한 자원이다. 하지만, 기 구축된 병렬 말뭉치는 양이 적거나, 특정 영역을 중심으로 구성되어 있는 문제가 있다. 이러한 문제를 해결하기 위해, 본 논문은 위키피디아로부터 자동 병렬 문장 추출 기법을 이용, 대량의 영어-한국어 간 병렬 말뭉치를 구축하고, 이를 교차언어 정보검색을 위한 질의어 번역에 적용하여 개선을 보인다. 실험의 성능 비교를 위해서 NTCIR-5 데이터를 이용하였으며 기 구축된 세종 병렬 말뭉치를 활용한 질의어 번역의 성능이 MAP 31.5%, R-P 33.0%에서, 새롭게 구축한 위키피디아 병렬 말뭉치를 활용한 질의어 번역의 성능이 MAP 34.6%, R-P 34.6%로, 각각 MAP 3.1%와 R-P 1.6%의 성능 향상을 보였다.

  • PDF