• Title/Summary/Keyword: 중성자 조사

Search Result 268, Processing Time 0.023 seconds

A study on the HTS-NAA/γ-spectrometry for the analysis of alpha-particle emitting impurities in silica (고순도 실리카중 알파방출 불순물 분석을 위한 HTS-NAA/γ-spectrometry 연구)

  • Lee, Kil Yong;Yoon, Yoon Yeol;Cho, Soo Young;Yang, Myung Kwon;Shim, Sang Kwon;Kim, Yongje;Chung, Yong Sam
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.5-12
    • /
    • 2005
  • It has been established that soft error of high precision electronic circuits can be induced by alpha particles emitted from the naturally occurring radioactive impurities such as U, and Th. As the electronic circuits have recently become lower dimension and higher density, these alpha-particle emitting radioactive impurities have to be strictly controlled. The aim of this study is to develop of NAA (Neutron Activation Analysis) and gamma-spectrometry to improve the analytical sensitivity and precision of U and Th. A new NAA method has been established using the HTS (Hydrulic transfer system) irradiation facility which has been used to produce radioisotopes for industries and medicines instead of the PTS (pneumatic transfer system) irradiation facility which has been used in general NAA. When the ultratrace impurities have to be analyzed by NAA, background gamma-ray spectra induced from $^{222}Rn$ and its progenies in air is serious problem. This unstable background has been eliminated or stabilized by the use of a nitrogen purging system. Ultra trace amounts of U (0.1 ng/g) and Th (0.01 ng/g) in high purity silica used for EMC could be analyzed by the use of HTS-NAA and low background gamma-spectrometry.

Determination of Uranium Concentration in Solid- and Liquid-state Geological Materials by Fission Track Registration Technique and its Applicability (피션트랙 검출기법에 의한 고체 및 액체상태 지질물질의 우라늄 정량과 그 적용성)

  • Shin, Seong-Cheon
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.77-90
    • /
    • 2015
  • The fission track registration techniques for accurate determinations of uranium in solid- and liquid-state geological materials were recommended and their applicability were examined. The determination of uranium can be achieved by optical counting of neutron-induced fission tracks of $^{235}U$ registered on solid-state track detectors under high magnification. In a dry registration method using powdered pellets of rocks (e.g., granite and coal) showing good uranium-affinity, it was not easy to decide an overall mean concentration over the total sample owing to track-clusters caused by frequent presence of uranium-bearing minerals. Separate scanning for homogeneous and track-clustered parts may be an alternative choice. Assuring the homogeneity over the whole sample, high reproducibilities were confirmed both from duplicate detections using mica and Lexan polycarbonate detectors and from multiple measurements at different thermal neutron fluences. The wet registration method using sealed quartz tubes is recommended to overcome the common heterogeneity in uranium concentrations of $10^1ppm$ and more. Adopting the wet registration, the uranium homogeneity was recovered below the $10^0ppm$ level and the lower detection limit was proved to reach without difficulty the $10^2ppb$ (i.e. $ng\;g^{-1}$) level.

The Strength and Fracture Behavior characteristics of Irradiated Zr-2.5Nb CANDU Pressure Tube Materials (Zr-2.5Nb 중수로 압력관의 조사후 강도 및 파괴거동 특성)

  • An, Sang-Bok;Kim, Yeong-Seok;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.510-519
    • /
    • 2001
  • The tensile and fracture toughness tests have been conducted to investigate the degradations of mechanical properties induced mainly by neutron irradiations in Zr-2.5Nb CANDU pressure tube materials operated in Wolsung Unit-1. the tests were performed at room, 150, 200, 250, 300 $\^{C}$ for the irradiated and unirradiated specimens in hot cell. The specimens were directly machined from the tube retaining original curvature using specially designed electric discharge machine(EDM). From the tensile tests of the irradiated specimens, it was found that tensile strength was increased and total elongation was decreased compared to those of the unirradiated ones. The active voltages in the fracture toughness tests for the irradiated showed the discontinuous abrupt increases caused by crack jumping in lower temperature. In the crack resistance curves we found the stable crack growth in the unirradiated, whereas the unstable and three crack growth stages in the irradiated specimens due to the accumulated irradiation defects. The various fracture characteristic values in the irradiated are remarkably lower than those of the unirradiated. Through the fractography, we found in the irradiated that smaller dimple and shorter fissures than the unirradiated, and that the fractured surface had three regions that were flat, transition and slant/shear area. These can explain the difference in the crack growth characteristic values of the irradiated and the unirradiated ones.

Tensile Behavior Characteristics of CANDU Pressure Tube Material Degraded by Neutron Irradiations (중수로 압력관 재료의 조사 열화에 따른 인장거동 특성)

  • An, Sang-Bok;Kim, Yeong-Seok;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.188-195
    • /
    • 2002
  • To investigate the degradation of mechanical properties induced mainly by neutron irradiation, the tensile tests were conducted from room temperature to 300\\`c using the irradiated and the unirradiated Zr-2.5Nb pressure tube materials. The irradiated longitudinal and transverse specimens were collected from the coolant inlet, middle, and outlet parts of M-11 tube which had been operated in Wolsung CANDU Unit-1 and exposed to different operating temperatures and irradiation fluences. The different tensile behavior was characterized not by the fluences of irradiation but by the tensile loading direction. The transverse specimen showed the higher strength and lower elongation than those of the longitudinal one. It was believed that these phenomena resulted from the microstructure anisotropy caused by the extrusion process. The increased strength hardening and decreased elongation embrittlement of the irradiated material were compard to those of the unirradiated one. While the tensile strength of the inlet was higher than that of the outlet, the elongation of the inlet was lower than that of outlet. Considering the operation condition, it was proposed that the operating temperature could be a more effective parameter than the irradiation fluence for long-time life. Through the TEM observation, it was found that while the a-type dislocation density was increased, the c-type dislocation was not changed in the irradiated. The fact that the higher dislocation density was sequentially distributed over the inlet, the middle, and the outlet parts was consistent with the distribution of the tensile strength.

Mouse model system based on apoptosis induction to crypt cells after exposure to ionizing radiation (방사선에 전신 조사된 마우스 음와 세포의 아포토시스 유도를 이용한 생물학적 선량 측정 모델 개발 연구)

  • Kim, Tae-Hwan
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.4
    • /
    • pp.571-578
    • /
    • 2001
  • To evaluate if the apoptotic fragment assay could be used to estimate the dose prediction after radiation exposure, we examined apoptotic mouse crypt cells per 1,000 cells after whole body $^{60}Co$ $\gamma$-rays and 50MeV ($p{\rightarrow}Be^+$) cyclotron fast neutron irradiation in the range of 0.25 to 1 Gy, respectively. The incidence of apoptotic cell death rose steeply at very low doses up to 1 Gy, and radiation at all doses tigger rapid changes in crypt cells in stem cell region. These data suggest that apoptosis may play an important role in homeostasis of damaged radiosensitive target organ by removing damaged cells. The curve of dose-effect relationship for the data of apoptotic fragments was obtained by the linear-quadratic model $y=0.18+(9.728{\pm}0.887)D+(-4.727{\pm}1.033)D^2$ ($r^2=0.984$) after $\gamma$-rays irradiation, while $y=0.18+(5.125{\pm}0.601)D+(-2.652{\pm}0.7000)D^2$ ($r^2=0.970$) after neutrons in mice. The dose-response curves were linear-quadratic, and a significant dose-response relationship was found between the frequency of apoptotic cell and dose. These data show a trend towards increase of the numbers of apoptotic crypt cells with increasing dose. Both the time course and the radiation dose-response curve for high and low linear energy transfer (LET) radiation modalities were similar. The relative biological effectiveness (RBE) value for crypt cells was 2.072. In addition, there were significant peaks on apoptosis induction at 4 and 6h after irradiation, and the morpholoigcal findings of the irradiated groups were typical apoptotic fragments in crypt cells that were hardly observed in the control group. Thus, apoptosis in crypt cells could be a useful in vivo model for studying radio-protective drug sensitivity or screening test, microdosimetric indicator and radiation-induced target organ injury. Since the apoptotic fragment assay is simple, rapid and reproducible in the range of 0.25 to 1 Gy, it will also be a good tool for evaluating the dose response of radiation-induced organ damage in vivo and provide a potentially valuable biodosimetry for the early dose prediction after accidental exposure.

  • PDF

Neutron Activation Analysis of Cadmium Deposition in Hair and Animal Tissues (동물체모 및 장기 중 카드뮴의 방사화 분석)

  • Ryu, Yong-Wun;Lee, Kee-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.17-25
    • /
    • 1990
  • Rats were ingested in drinking water 600mg/L of cadmium chloride solution during 3 months, then the distribution of Cd in major organs and hair were determined by neutron activation analysis. The results were as followings. 1. After administration for 24 hours using $^{115m}Cd$ as tracer, the distribution of blood was 0.03%, kidney 2.99% and liver 3.50% to determine with whole body counter. 2. Cd metal was rapidly excreted with kidney through blood and their accumulation appeared in liver and hair. 3. The comparative data to determine using neutron activation analysis. the content of cadmium of major organs in rats ingested of $CdCl_2$ during 3 month were shown to increase significantly both hair and liver. Above facts, hair samples were able to use as the diagnostic index to evaluate the accumulation of cadmium in liver.

  • PDF

Development of Disassembly Tool for Intermediate Examination of Nuclear Fuel Rods (핵연료봉 중간검사를 위한 장탈착 툴 개발)

  • Hong, Jintae;Heo, Sung-Ho;Kim, Ka-Hye;Park, Sung-Jae;Joung, Chang-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.443-449
    • /
    • 2014
  • To check the characteristics of nuclear fuels during an irradiation test, the nuclear fuel rod needs to be disassembled from the test rig located in the pool of the research reactor. Then, the disassembled fuel rod is delivered to the hot cell for intermediate examination. A fuel rod that passes the intermediate examination is delivered to the reactor pool to be reassembled into the test rig. The irradiation test is resumed with the reassembled test rig. Because nuclear fuel rods irradiated by neutrons are highly radioactive, all the disassembly and reassembly processes should be carried out in the pool of the research reactor to prevent operators being exposed to radiation. In particular, because a test rig is 5.4-m long and the reactor pool of HANARO is 6-m deep, special tools need to be developed for performing the disassembly and reassembly processes. In this study, a new assembly design of nuclear fuel rods for intermediate examination is introduced. Furthermore, tools for treating the irradiated fuel rod assembly are introduced, and their performance is verified by an out pile test.

The Relative Effectiveness of Various Radiation Sources on the Resistivity Change in n-Type Silicon

  • Jung, Wun
    • Nuclear Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.91-101
    • /
    • 1969
  • Resistivity changes of n-type float-zone silicon crystals with 6.4$\times$10$^{14}$ to 1.25$\times$10$^{17}$ phosphorus atoms/㎤ due to irradiation by (1) 1 MeV electrons, (2) two types of research reactors, and (3) $Co^{60}$ ${\gamma}$-ray sources were investigated. The results were analyzed on the basis of a simple exponential formula derived by Buehler. While the formula gave a fair fit in the low fluence range in most cases, the deviation was quite appreciable in the case of 1 MeV electron irradiation, and a linear change gave better fit in some cases. The large change in the carrier removal rate in electron-irradiated samples in the high fluence range was analyzed in detail in terms of the Fermi level cross-over of the defect levels. Based on the damage constants evaluated from the initial portion of data where the formula was applicable, the relative effectiveness of various radiation sources in causing the resistivity change in n-type silicon was compared. The TRIGA Mark II reactor neutrons, for example, were found to be about 40 times more effective than 1 MeV electrons. The dependence of the damage constant on the initial carrier concentration was also examined. The physical basis of the exponential law and the effect of the Fermi level cross-over of the defect levels on the resistivity change in the high fluence ranges are discussed.

  • PDF

A Study on Transmuted Impurity Atoms formed in Neukon-Irradiated ZnO Thin films (중성자 조사한 ZnO 박막에 생성된 헥전환 불순물들fH 대한 연구)

  • Sun, Kyu-Tae;Park, Kwang-Soo;Han, Hyon-Soo;Kim, Sang-Sig
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.161-164
    • /
    • 2001
  • Transmuted impurity atoms formed in neutron-irradiated ZnO thin films were theoretically identified first and then experimentally confirmed by Photoluminescence (PL). ZnO thin films grown by plasma-assisted molecular beam epitaxy were irradiated by neutron beam at room temperature. Among eight isotropes naturely exiting in ZnO films, only $^{64}Zn$, $^{68}Zn$, $^{70}Zn$ and $^{18}O$ were expected to transmute into $^{65}Cu$, $^{69}Ga$, $^{71}Ga$ and $^{19}F$, respectively. The concentrations of these transmuted atoms were estimated by considering natural abundance, neutron fluence, and neutron cross section. The neutron-irradiated ZnO thin films were characterized by PL. In the PL spectra of these ZnO thin film, the Cu-related PL peaks were seen, but the Ga- or F-associated PL peaks were absent. This observation demonstrates the existence of $^{65}Cu$ in the ZnO. In this paper, emission mechanism of Cu impurities wil1 be described and the reason for the absence of the Ga- or F-associated PL peaks will be discussed.

  • PDF

Harmonic frequency analysts of acoustic Barkhausen noise on neutron irradiated material (중성자조사재료의 acoustic Barkhausen noise의 harmonic frequency 분석)

  • Sim Cheul-Muu;Park Seung-Sik;Koo Kil-Moo;Sohn Jae-Min;Lee Chang-Hee
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.401-406
    • /
    • 1999
  • In relation to a non-destructive evaluation of irradiation damages of micro-structure interstitial, void and dislocation, the changes in the hysteresis loop, Barkhausen noise amplitude and the harmonics frequency due to a neutron irradiation were measured and evaluated. The Mn-Mo-Ni low alloy steel of RPV was irradiated to a neutron fluence of $2.3\times10^{19}\;n/cm^2\;(E\geq1\;MeV)\;at\;288^{\circ}C$. The saturation magnetization of neutron irradiated metal did not change. The neutron irradiation caused the coercivity to increase, whereas susceptibility to decrease. The amplitude of Barkhausen noise parameters associated with the domain wall motion were decreased by a neutron irradiation. The spectrum of Barkhausen noise is analysed with an applied frequency of 4 Hz and 8 Hz, sampling time of $50\;{\mu}sec\;and\;20\;{\mu}sec$. The harmonic frequency shows 4 Hz, 8 Hz, 12 Hz; and 16 Hz reflected from an unirradiated specimen. On the contrary, the harmonic frequency disappeared on the irradiated specimen.

  • PDF