• Title/Summary/Keyword: 중기예보

Search Result 16, Processing Time 0.023 seconds

Establishment of Geospatial Schemes Based on Topo-Climatology for Farm-Specific Agrometeorological Information (농장맞춤형 농업기상정보 생산을 위한 소기후 모형 구축)

  • Kim, Dae-Jun;Kim, Soo-Ock;Kim, Jin-Hee;Yun, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.146-157
    • /
    • 2019
  • One of the most distinctive features of the South Korean rural environment is that the variation of weather or climate is large even within a small area due to complex terrains. The Geospatial Schemes based on Topo-Climatology (GSTP) was developed to simulate such variations effectively. In the present study, we reviewed the progress of the geospatial schemes for production of farm-scale agricultural weather data. Efforts have been made to improve the GSTP since 2000s. The schemes were used to provide climate information based on the current normal year and future climate scenarios at a landscape scale. The digital climate maps for the normal year include the maps of the monthly minimum temperature, maximum temperature, precipitation, and solar radiation in the past 30 years at 30 m or 270 m spatial resolution. Based on these digital climate maps, future climate change scenario maps were also produced at the high spatial resolution. These maps have been used for climate change impact assessment at the field scale by reprocessing them and transforming them into various forms. In the 2010s, the GSTP model was used to produce information for farm-specific weather conditions and weather forecast data on a landscape scale. The microclimate models of which the GSTP model consists have been improved to provide detailed weather condition data based on daily weather observation data in recent development. Using such daily data, the Early warning service for agrometeorological hazard has been developed to provide weather forecasts in real-time by processing a digital forecast and mid-term weather forecast data (KMA) at 30 m spatial resolution. Currently, daily minimum temperature, maximum temperature, precipitation, solar radiation quantity, and the duration of sunshine are forecasted as detailed weather conditions and forecast information. Moreover, based on farm-specific past-current-future weather information, growth information for various crops and agrometeorological disaster forecasts have been produced.

A Statistical Correction of Point Time Series Data of the NCAM-LAMP Medium-range Prediction System Using Support Vector Machine (서포트 벡터 머신을 이용한 NCAM-LAMP 고해상도 중기예측시스템 지점 시계열 자료의 통계적 보정)

  • Kwon, Su-Young;Lee, Seung-Jae;Kim, Man-Il
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.415-423
    • /
    • 2021
  • Recently, an R-based point time series data validation system has been established for the statistical post processing and improvement of the National Center for AgroMeteorology-Land Atmosphere Modeling Package (NCAM-LAMP) medium-range prediction data. The time series verification system was used to compare the NCAM-LAMP with the AWS observations and GDAPS medium-range prediction model data operated by Korea Meteorological Administration. For this comparison, the model latitude and longitude data closest to the observation station were extracted and a total of nine points were selected. For each point, the characteristics of the model prediction error were obtained by comparing the daily average of the previous prediction data of air temperature, wind speed, and hourly precipitation, and then we tried to improve the next prediction data using Support Vector Machine( SVM) method. For three months from August to October 2017, the SVM method was used to calibrate the predicted time series data for each run. It was found that The SVM-based correction was promising and encouraging for wind speed and precipitation variables than for temperature variable. The correction effect was small in August but considerably increased in September and October. These results indicate that the SVM method can contribute to mitigate the gradual degradation of medium-range predictability as the model boundary data flows into the model interior.

A Feasibility Study on the RPM and Engine Power Estimation Based on the Combination of AIS and ECMWF Database to Replace the Full-scale Measurement (실선계측 데이터 대체를 위한 AIS 및 ECMWF 데이터베이스 조합을 이용한 LNGC의 분당 회전수 및 동력 추정에 관한 타당성 연구)

  • You, Youngjun;Kim, Jaehan;Seo, Min-Guk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.501-514
    • /
    • 2017
  • In the previous research, a study was carried out to estimate the actual performance such as the propeller Revolution Per Minute (RPM) and engine power of a Liquefied Natural Gas Carrier (LNGC) using the full-scale measurement data. After the predicted RPM and engine power were verified by comparing those with the measured values, the suggested method was regarded to be acceptable. However, there was a limitation to apply the method on the prediction of the RPM and engine power of a ship. Since the information of route, speed, and environmental conditions required for estimating the RPM and engine power is generally regarded as the intellectual property of a shipping company, it is difficult to secure the information on a shipyard. In this paper, the RPM and engine power of the 151K LNGC was estimated using the combination of Automatic Identification System (AIS) and European Centre for Medium-Range Weather Forecasts (ECMWF) database in order to replace the full-scale measurement. The simulation approach, which was suggested in the previous research, was identically applied to the prediction of RPM and engine power. After the results based on the AIS and ECMWF database were compared with those obtained from the full-scale measurement data, the feasibility was briefly reviewed.

Development of Short-term Forecast Model using ERA5 reanalysis data based on Deep Learning model (ERA5 재해석 자료를 활용한 Deep Learning 모델 기반의 단기 예측 모형 개발)

  • Jin-Young Kim;Sumya Uranchimeg;Ji-Moon Yuk;Chan Ho Park;Boo Kyoung Park;Hee Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.289-289
    • /
    • 2023
  • 4차산업 혁명이 도래한 이후로 전세계적으로 AI 기술이 유래 없는 속도로 발달 및 활용되고 있으며, 다양한 분야에서 AI 기법을 도입한 연구가 활발히 진행 중에 있다. 최근 수자원 분야에서는 단기 강우 예측, 댐 유입량 예측 및 하천 수위 예측 등의 분야에서 AI 기술이 접목되어 꾸준한 기술 개발이 이루어지고 있다. 그러나 단변량으로 축척된 자료를 활용하여 중·장기 모형 개발 연구가 다수 진행되고 있지만, 급격한 기후변화 현상과 복잡한 매커니즘을 보이고 있는 기상현상의 경우 단변량 분석으로서는 정확도가 저하 될 수 있는 우려가 있는 것이 현실이다. 이에 본 연구에서는 상기에 제시된 단점을 극복하고자 다양한 기상자료를 검증·예측인자로 활용함과 동시에 Deeplearning 모형과 결합하여 신뢰성 있는 단기 강수 예측이 가능한 모형을 개발하였다. 본 연구에서는 유럽중기예보센터(ECMWF, European Center for Medium-Range Weather Forecasts)에서 제공하고 있는 ERA5 재해석 자료를 활용하였으며, Deeplearning 모형과 결합하여 단기 강우 예측이 가능한 모형을 개발하였다. 1차적으로 격자자료(25km×25km)로 제공되고 있는 ERA5 자료를 상세화(downscaling) 모형에 적용하여 기상청 관측소와 비교·검증하였으며, Deeplearning 모형을 통해 단기 예측이 가능한 모형으로 확장하였다. 이때 Deeplearning의 다양한 모형 중 시계열 분석에 있어 예측 성능이 높은 LSTM 모형을 활용하였으며, 제공되고 있는 대기 변수의 상호관계를 노드간 연결을 통해 결과의 정확도와 신뢰성을 확보하였다. 본 연구 결과는 기관별로 제공하고 있는 예측 수준을 상회하는 결과를 도출하였으며, 홍수기에 집중되는 강우량을 예측하여 대비·대책을 선제적으로 마련할 수 있는 자료로써의 활용성이 높을 것으로 사료된다.

  • PDF

The Estimation of Arctic Air Temperature in Summer Based on Machine Learning Approaches Using IABP Buoy and AMSR2 Satellite Data (기계학습 기반의 IABP 부이 자료와 AMSR2 위성영상을 이용한 여름철 북극 대기 온도 추정)

  • Han, Daehyeon;Kim, Young Jun;Im, Jungho;Lee, Sanggyun;Lee, Yeonsu;Kim, Hyun-cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1261-1272
    • /
    • 2018
  • It is important to measure the Arctic surface air temperature because it plays a key-role in the exchange of energy between the ocean, sea ice, and the atmosphere. Although in-situ observations provide accurate measurements of air temperature, they are spatially limited to show the distribution of Arctic surface air temperature. In this study, we proposed machine learning-based models to estimate the Arctic surface air temperature in summer based on buoy data and Advanced Microwave Scanning Radiometer 2 (AMSR2)satellite data. Two machine learning approaches-random forest (RF) and support vector machine (SVM)-were used to estimate the air temperature twice a day according to AMSR2 observation time. Both RF and SVM showed $R^2$ of 0.84-0.88 and RMSE of $1.31-1.53^{\circ}C$. The results were compared to the surface air temperature and spatial distribution of the ERA-Interim reanalysis data from the European Center for Medium-Range Weather Forecasts (ECMWF). They tended to underestimate the Barents Sea, the Kara Sea, and the Baffin Bay region where no IABP buoy observations exist. This study showed both possibility and limitations of the empirical estimation of Arctic surface temperature using AMSR2 data.

Spatial and Temporal Variability of Significant Wave Height and Wave Direction in the Yellow Sea and East China Sea (황해와 동중국해에서의 유의파고와 파향의 시공간 변동성)

  • Hye-Jin Woo;Kyung-Ae Park;Kwang-Young Jeong;Do-Seong Byun;Hyun-Ju Oh
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Oceanic wind waves have been recognized as one of the important indicators of global warming and climate change. It is necessary to study the spatial and temporal variability of significant wave height (SWH) and wave direction in the Yellow Sea and a part of the East China Sea, which is directly affected by the East Asian monsoon and climate change. In this study, the spatial and temporal variability including seasonal and interannual variability of SWH and wave direction in the Yellow Sea and East China Sea were analyzed using European Center for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5) data. Prior to analyzing the variability of SWH and wave direction using the model reanalysis, the accuracy was verified through comparison with SWH and wave direction measurements from Ieodo Ocean Science Station (I-ORS). The mean SWH ranged from 0.3 to 1.6 m, and was higher in the south than in the north and higher in the center of the Yellow Sea than in the coast. The standard deviation of the SWH also showed a pattern similar to the mean. In the Yellow Sea, SWH and wave direction showed clear seasonal variability. SWH was generally highest in winter and lowest in late spring or early summer. Due to the influence of the monsoon, the wave direction propagated mainly to the south in winter and to the north in summer. The seasonal variability of SWH showed predominant interannual variability with strong variability of annual amplitudes due to the influence of typhoons in summer.