• Title/Summary/Keyword: 중금속 이동도

Search Result 240, Processing Time 0.022 seconds

Absorption Capacity of Heavy Metals and Harmful Elements of Waste Leachate Using by Fast Growing Trees (속성수를 이용한 쓰레기 매립지 침출수의 중금속 및 유해성분의 흡수, 제거 가능성)

  • 이동섭;우수영;김동근;김판기;권오규;배관호;이은주
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.2
    • /
    • pp.81-87
    • /
    • 2001
  • Populus euramericana and Betula platyphylla var. japonica have been identified as possible species for use for phytoremediation of landfills. To identify the capacity of waste leachate absorption in Populus euramericana and Betula platyphylla var, japonica, four different treatments were applied to these seedlings: leachate solution (100% leachate), 50% dilution (50% leachate: 50% water, v/v) and 25% dilution (25% leachate: 75% water, v/v) were applied to these two species. After the experiment, concentrations of heavy metals in tree biomass were analyzed by Inductively Coupled Plasma emission spectrometer (ICP). These two species can take up the hazardous parts of the leachate such as heavy metals. Especially, these species showed good absorption capacity of Al, Cr, and Fe elements. The result of this study suggested that these two species can take up the toxic materials through their roots and transport them to stems or leaves.

  • PDF

Field application on bioelectrokinetic remediation of shooting range soil (생물학적으로 향상된 동전기 처리를 이용한 사격장 오염토양 정화 현장실증 연구)

  • Kwon, Young-Ho;Kim, Byeong-Kyu;Kim, Jeong-Rae;Kim, Jeong-Yeon;Oh, Hee-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1225-1230
    • /
    • 2010
  • 본 연구는 군부대 사격장의 중금속 오염토양에 대하여 생물학적 용출기술(BT)과 전기동력학적 기술(ET)의 통합공정의 적용성 평가 연구에 대한 것이다. 사격장 오염 토양의 경우 사격에 의해 탄두가 피탄지에 박히면서 오염토양 내에 잔존하여 탄두를 구성하는 주성분인 납과 구리 등에 의해 지속적인 오염원으로 작용하는 특징을 가진다. 따라서 사격장 토양오염정화를 위해서는 이 탄두를 물리적으로 선별하는 물리적 선별공정을 전처리공정으로 수행한 후 인공적으로 조성된 셀에 통합공정 적용성 평가를 위한 현장실증시험을 수행하였다. 생물학적 용출을 통해 토양내 잔류하는 중금속을 이온화시켜 이동성을 크게 한후 전기동력학적 기술을 통해 토양내에서 전해질로 이동시켜 최종적으로 전해질을 처리하는 시스템으로써 공정 모니터링결과 납과 구리 모두 주목할 만한 제거효율을 얻을수 있었다. 오염물질별 공정 적용성 평가결과 납의 경우 황산화박테리아에 의해 이온화가 되지만 황산화박테리아의 생장 부산물인 황산염이온(${SO_4}^{2-}$)과 반응하여 안정성이 큰 Anglesite($PbSO_4 $)를 형성하므로 전체적인 제거효율이 저하되는 것을 확인하였고 기타 미생물을 이용한 생물학적 용출기술 연구의 필요성을 확인하였다. 구리의 경우 황산염박테리아를 이용한 생물학적 용출공정 및 전기동력학적 처리공정의 통합공정을 통해 주목할 만한 제거효율을 얻을수 있었으며 통합공정의 효율성을 확인할 수 있었다. 본 연구를 통하여 미생물학적 용출기술과 전기동력학적 기술의 통합공정은 현장특이성(Site-specific) 확인후 적용가능성이 있음을 확인하였다.

  • PDF

Characteristics of Cd Accumulation and Phytoremediation among Three Half-sib Families of Betula schmidtii (박달나무의 반형매 가계간 Cd Phytoremediation과 축적 특성)

  • Oh Chang Young;Lee Jae Cheon;Han Sim Hee;Kim Pan Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.204-209
    • /
    • 2004
  • The main purpose of this study was to select a B. schmidtii population which has high cadmium tolerance and remediation and to determine the difference of cadmium uptake patterns among populations. One-year-old B. schmidtii seedlings were treated with 0, 0.4, 0.8mM CdSO$_4$. 3/8H$_2$O for two months. Cadmium concentrations in different positions of stem and cadmium concentrations and contents of leaves, stems and roots were analyzed. Also soil cadmium concentrations were analyzed. B. schmidtii was highest in root and lowest in shoot tip, showing a gradual decrease from root to shoot tip. The shoot to root Cd concentration ratios were over 1.26. It is concluded that B. schmidtii has good potential for phytoextraction as a shoot accumulator, which can be used for remediation of cadmium-contaminated areas. But tolerance differs between populations. Therefore B. schmidtii should be used as a means of phytoremediation after selection for Cd tolerance is performed.

Electrokinetic Extraction of Heavy Metal from Clayey Soil : Desorption Characteristics During Electrical Treatment (중금속으로 오염된 점성토에서 동전기프로세스에 의한 탈착 특성)

  • Lee, Myung-Ho;Jang, Yeon-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.23-28
    • /
    • 2007
  • A number of batch isotherm and electrokinetic experiments were conducted in order to investigate the migration of zinc and its removal efficiency during electrokinetic soil processing. Sorption and desorption characteristics of zinc spiked kaolin clay have been examined by comparison with electrically induced desorption and precipitation occurring in the anode and cathode regions, respectively. The removal efficiency of zinc under the applied voltage gradient of 300 V/m was found to be up to approximately 80 % within 4 hours of the electrokinetic treatment. The study is significant with respect to the remediation of contaminated areas.

Geochemical Approaches for Investigation and Assessment of Heavy Metal Contamination in Abandoned Mine Sites (폐광산지역의 오염특성 조사와 평가를 위한 지구화학적 접근방법)

  • 이평구;조호영;염승준
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.35-48
    • /
    • 2004
  • This paper provides a comprehensive overview of geochemical approaches for investigating and assessing heavy metal contamination in abandoned mine sites. Major sources of contaminants at the abandoned mine sites are mine water, waste rocks, tailings, and chemicals used in beneficiation and mineral processing. Soil, sediment, surface and ground water, and ecological system can be contaminated by heavy metals, which are transported due to erosion of mine waste piles, discharge of acid mine drainage and processed water, and dispersion of dust from waste rocks and tailings. The abandoned mine sites should be characterized using various methods including chemical analysis, mineralogical analysis, acid generation prediction tests, leaching/extraction tests, and field tests. Potential and practical environmental impacts from the abandoned mines should be assessed based on the site characterization.

Heavy Metal Contamination around the Abandoned Au-Ag and Base Metal Mine Sites in Korea (국내 전형적 금은 및 비(base)금속 폐광산지역의 중금속 오염특성)

  • Chon Hyo-Taek;Ahn Joo Sung;Jung Myung Chae
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.101-111
    • /
    • 2005
  • The objectives of this study we to assess the extent and degree of environmental contamination and to draw general conclusions on the fate of toxic elements derived from mining activities in Korea. 인t abandoned mines with four base-metal mines and four Au-Ag mines were selected and the results of environmental surveys in those areas were discussed. In the base-metal mining areas, the Sambo Pb-Zn-barite, the Shinyemi Pb-Zn-Fe, the Geodo Cu-Fe and the Shiheung Cu-Pb-Zn mine, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials, tailings and slag. Furthermore, agricultural soils, stream sediments and stream water near the mines were severely contaminated by the metals mainly due to the continuing dispersion downstream and downslope from the sites, which was controlled by the feature of geography, prevailing wind directions and the distance from the mine. In e Au-Ag mining areas, the Kubong, the Samkwang, the Keumwang and the Kilkok mines, elevated levels of As, Cd, Cu, Pb and Zn were found in tailings and mine dump soils. These levels may have caused increased concentrations of those elements in stream sediments and waters due to direct dis-charge downstream from tailings and mine dumps. In the Au-Ag mines, As would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and mobility of these metals would be enhanced by the effect of oxidation. According to sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. As application of pollution index (PI), giving data on multi-element contamination in soils, over 1.0 value of the PI was found in soils sampled at and around the mining areas.

Separation and Recovery of Heavy Metal Ion using Liquid Membrane (액체막법에 의한 중금속이온의 분리 및 회수)

  • Jo, Mun Hwan;Jeong, Hak Jin;Lee, Sang In;Kim, Jin Ho;Kim, Si Jung
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.2
    • /
    • pp.122-128
    • /
    • 1994
  • Macrocyclic ligand has been known to selectively bind with metal ions so that ability applied for the transport of metal ions across the emulsion liquid membrane in this study. The metal ions are transproted from the source phase to the receiving phase by the carrier of the organic phase. Several factors involved in the transport of metal ions acrose the emulsion membrane we reported here and these factors provided the informations for the selective seperation of some metal ion. Stability constants for cation-macrocyclic ligand and metal ion-anion receiving phase interaction are examined as parameters for the prediction of metal ion transport selectivities. $Pb^{2+}$ was transported higher rates than the other metal ions in the mixture solution. The interaction of metal ion to anion in receiving phase is important. $S_2O_3^{2-}$- in replacement of $NO_3^-$ in the receiving phase enhances the transport of $Pb^{2-}$since $Pb^{2-}-S_2O_3^{2-}$interaction is greater than $Pb^{2+}-NO_3^-$ interaction.

  • PDF

Modeling the Fate and Transport of Arsenic in Wetland Sediments (습지 퇴적물에서 비소의 성상과 이동 모의에 관한 수학적 모형)

  • Park, Seok-Soon;Wang, Soo-Kyun
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.434-446
    • /
    • 2003
  • The fate and transport of many trace metals, metalloids, and radionuclides in porous media is closely linked to the biogeochemical reactions that occur as a result of organic carbon being sequentially degraded by different microorganisms using a series of terminal electron acceptors. The spatial distribution of these biogeochemical reactions is affected by processes that are often unique and/or characteristic to a specific environment. Generic model formulations have been developed and applied to simulate the fate and transport of arsenic in two hydrologic settings, permanently flooded freshwater sediments, namely non-vegetated wetland sediments and vegetated wetland sediments. The key physical processes that have been considered are sedimentation, effects of roots on biogeochemistry, advective transport, and differences in mixing processes. Steady-state formulations were applied to the sedimentary environments. Results of numerical simulations show that these physical processes significantly affect the chemical profiles of different electron acceptors, their reduced species, and arsenate as well as arsenite that will result from the degradation of an organic carbon source in the sediments. Even though specific biological transformations are allowed to proceed only in zones where they are thermodynamically favorable, the results show that mixing as well as abiotic reactions can make the profiles of individual electron acceptors overlap and/or appear to reverse their expected order.

Fraction and Geoaccumulation Assessment Index of Heavy Metals in Abandoned Mines wastes (휴폐광산 지역에서 폐석의 중금속 존재 형태와 지화학적농축계수 평가)

  • Kim Hee-Joung;Park Byung-Kil;Kong Sung-Ho;Lee Jai-Young;Ok Yong-Sik;Jun Sang-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.75-80
    • /
    • 2005
  • Several metalliferous including Guedo mine, Manjung mine and Joil mine located at the upper watershed of Namhan river, were abandoned or closed since 1988 due to the mining industry promotion policy and thus disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in soil pollution. In this research, total and fractional concentrations of heavy metals in mining wastes were analyzed and accordingly the degree of soil pollutions in the abandoned mine area were quantitatively assessed employing the several pollution indices. The mining waste samples from Guedo mine, Manjung mine and Joil mine recently abandoned were collected for the evaluation of the potential of water pollution by mining activities. Index of geoaccumulation fractional composition and removal efficiency of some heavy metals by different concentration of HCl treatment were analyzed. Index of geoaccumulation of Cd, Pb, Zn, Cu, Ni and Cr are 6, $4\~6,\;0\~6,\;4\~5$, 2 and 0 respectively. The index of geoaccumulation of Cd, Pb, Zn and Cu reveals the mining wastes has high pollution potential in the area. According to sequential extraction of metals in the mine wastes organic fraction of Cu, reducible fraction of Pb, residual fraction of Ni and Zn were the most abundant fraction of heavy metals in mining wastes.

Evaluation of Cd Adsorption Characteristic by Microplastic Polypropylene in Aqueous Solution (수중에서 미세플라스틱인 Polypropylene의 Cd 흡착특성 평가)

  • Eom, Ju-Hyun;Park, Jong-Hwan;Kim, Seong-Heon;Kim, Yeong-Jin;Ryu, Sung-Ki;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.2
    • /
    • pp.83-88
    • /
    • 2019
  • BACKGROUND: In recent years, studies on microplastics have focused on their decomposition in the ocean. However, no studies have been reported on the interaction between microplastics and metal ions in aqueous solutions. Therefore, this study was conducted to evaluate the adsorption capacity of cadmium(Cd) by polypropylene (PP) in aqueous solution. METHODS AND RESULTS: Cadmium adsorption characteristics of PP in aqueous solution were evaluated through various conditions including initial Cd concentration(1.25-25 mg/L), contact time(0.5-24 h), initial pH(2-6) and temperature($20-50^{\circ}C$). Cadmium adsorption fit on PP was well described by Freundlich isotherm model with adsorption capacity(K) of 0.028. The adsorption amount of Cd by PP increased with increasing contact time, indicating that adsorption of PP by Cd was dominantly influenced by contact time. Especially, the removal efficiency of Cd by PP was highest at high temperature. However, the surface functional groups of PP before and after adsorption of Cd were similar, suggesting that adsorption of Cd by PP is not related to surface functional groups. CONCLUSION: Our study suggests that PP affects the behavior of Cd in aqueous solution. However, in order to clarify the specific relationship between microplastics and metal ions, mechanism research should be carried out.