• Title/Summary/Keyword: 중금속 이동도

Search Result 240, Processing Time 0.022 seconds

The Combustion Safety of Waste CCA Treated Wood (폐 CCA처리재의 소각처리)

  • Son Dong-won;Lee Dong-heub;Lee Hyun-mi;Lee Myung-je
    • Journal of Korea Foresty Energy
    • /
    • v.23 no.2
    • /
    • pp.29-33
    • /
    • 2004
  • This study was carried out to find out safety disposal methods of waste CCA treated wood. The heavy metals of remnant were analyzed after combustion of CCA treated wood at different temperatures. Arsenic volatilized temperature was detected. The removal rate of heavy metals by acid in the ash were examined. Through this study, we could conclude that in order to protect volatilize arsenic, combustion of CCA treated wood should be do under the $300^{\circ}C$. But when CCA treated wood combustion under $300^{\circ}C$, it's weight-loss rate was $55\%$, so land reclamation dependence will be increased. When CCA treated wood combustion at high temperature, the land reclamation dependence could be reduced, but the arsenic that volatilize into the atmosphere should be captured. When it bums with high temperature, the ash contains lots of copper and chromium, so removal of heavy metals should be conducted.

  • PDF

Removal of Heavy Metal and Organic Substance in Contaminated Soils by Electrokinetic and Ultrasonic Remediation (동전기 및 초음파 복원기술에 의한 오염지반내의 중금속 및 유기오염물질 제거)

  • Chung, Ha-Ik
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.83-91
    • /
    • 2003
  • The electrokinetic technique has been applied to remove mainly the heavy metal and the ultrasonic technique to remove mainly organic substance in contaminated soil. In this study, the combined electrokinetic and ultrasonic remediation technique was studied far the removal of heavy metal and organic substance in contaminated soils. This study emphasized the coupled effects of electrokinetic and ultrasonic techniques on migration as well as remediation of contaminants in soils. The laboratory soil flushing tests combining electrokinetic and ultrasonic technique were conducted using specially designed and fabricated devices to determine the effect of both of these techniques. A series of laboratory experiments involving the simple, electrokinetic, ultrasonic, and electrokinetic & ultrasonic flushing test were carried out. A soil admixed with sand and kaolin was used as a test specimen, and Pb and ethylene glycol were used as contaminants of heavy metal and organic substance. An increase in out flow, permeability and contaminant removal rate was observed in electrokinetic and ultrasonic flushing tests. Some practical implications of these results are discussed in terms of technical feasibility of in situ implementation of electrokinetic ultrasonic remediation technique.

Heavy Metals Adsorption by Phosphorylated Wood and Bark (인산화 처리 목분과 수피에 의한 중금속 흡착)

  • Paik, Ki-Hyon;Kim, Dong-Ho;Lee, Dong-Heub
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.75-79
    • /
    • 2000
  • To improve the adsorption of heavy metal ions in aqueous solutions. sawdust and bark of pine (Pinus densiflora) and oak(Quercus accutisima) were phosphorylated. The phosphorylated sawdust and bark contained phosphorous of 1.2~1.3% in the treatment for 1 hr and 1.4~1.7% for 2 hrs regardless of species and tree segments. The sawdust indicated considerable increase in the adsorption ratio of $Cu^{2+}$, $Zn^{2+}$ and $Cd^{2+}$, however the adsorption of $Pb^{2+}$ was a little increased. The pine sawdust was more effective in the adsorption of heavy metal ions than that of oak. While the bark indicated little adsorption efficiency of heavy metal ions.

  • PDF

The Removal of Heavy Metals from Treeated Wood by Biological Methods (II) - Removal of Heavy metals from CCA and CCFZ- treated Wood - (생물학적인 방법을 이용한 방부처리재의 중금속 제거 (II) - CCA, CCFZ 처리재에서 중금속 제거 -)

  • Son, Dong-won;Lee, Dong-heub;Kang, Chang-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • Heavy metals were removed from CCA- and CCFZ- treated wood using a brown-rot fungi Tyromyces palustris. The amount of effective elements extracted from treated woods was compared for different treatment methods. The relationship between the amount of heavy metals removed and concentrations of oxalic acid for treated wood was examined. Also, the relationship between mycelia weight and removal rate was examined. The removed quantity of heavy metal from treated wood according to fermentation methods was examined. The extraction amount of chromium and arsenic components increased with increasing oxalic acid concentration, but the extraction amount of copper did not improved much. A 287 mg of mycelia weight can remove chromium and arsenic over 60% in 3 g CCA chips and copper was also removed over 50%. The chromium, copper and arsenic were removed over 60% by shaking fermentation, the removal rate of copper by static cultivation was higher than that of shaking fermentation. The removal rate of chromium, copper and arsenic were 72%, 61% and 59% with air-lift bioreactor, respectively.

Vertical Distribution of Heavy Metals in Paddy Soil Near Abandoned Metal Mines (폐금속광산 주변 논토양 중 중금속의 수직분포 특성)

  • Jung, Goo-Bok;Kim, Won-Il;Park, Kwang-Lai;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.297-302
    • /
    • 2001
  • To compare the relationship between the vertical distribution of heavy metals in paddy soil and soil pH near four abandoned metal mines, 40 paddy surface soils $(0{\sim}15\;cm)$ and 12 soils with soil depths ($0{\sim}20$, $20{\sim}40$, $40{\sim}60$, $60{\sim}80$ and $80{\sim}100$ cm) were collected. Both total and extractable heavy metal contents in soils were analyzed after acid digestion $(HNO_3:HClO_4:H_2SO_4)$ and 0.1 N-HCl extraction, respectively. The 0.1 N-HCl fraction ratio over total contents of Cd, Cu, Pb, and Zn were 57, 30, 23, and 19% respectively. Vertical distribution of heavy metals varied considerably among the different mines. In Choil mine, there was no difference in concentrations of all the metals with soil layers. However, Cu and Pb contents in Gahak mime were high at $0{\sim}20\;cm$ depth, and Zn was high at $0{\sim}40\;cm$ depth. In Sinyemi mine, Cd and Cu contents were high at $0{\sim}40\;cm$ depth. Cd, Cu, and Pb contents in Okcheon mine were high through all soil profiles up to 100 cm soil depth. The 0.1 N-HCl fraction ratio over total contents of heavy metals with soil layers were very high at $0{\sim}20\;cm$ depth. As soil depth increased, fraction ratio of heavy metals decreased at the high soil pH (Gahak, Sinyemi, and Choil mines). However, the ratios of Cd, Cu, and Pb in Okcheon mine, having a relatively lower soil pH than other sites, were relatively similar through all the soil profiles up to 100 cm soil depth. Therefore, it was estimated that the mobility and availability of heavy metals in soils were affected by soil pH.

  • PDF

The Distribution Characteristics of Heavy Metals at Field and Upland Soils (경작지 및 산지토양의 층위별 중금속농도의 분포 특성)

  • Choi, I-Song;Park, Jea-Young;Oh, Jong-Min
    • Journal of the Korean earth science society
    • /
    • v.23 no.5
    • /
    • pp.406-415
    • /
    • 2002
  • Heavy metal concentrations (Cu(II), Zn(II), Pb(II) and Cd(II)) at field and upland soils were investigated with two extraction methods, 0.1mole L$^{-1}$ HCI extraction and HNO$_3$-HCIO$_4$ digestion, in order to estimate soil pollution and to understand their distribution and accumulation characteristics. Through an application of 0.1mole L$^{-1}$ HCI extraction method, the surface horizons of field soils were found to have higher concentrations of heavy metals (except Pb(II)) than those of upland soil. It was also seen that Cu(II), Zn(II) and Cd(II) were enriched in surface horizon of field soils, whereas upland soils did not show much difference across depth. When the method of HNO$_3$-HCIO$_4$ digestion was used, upland soils showed higher concentrations than those of other soils, and the distribution of heavy metals did not show much difference between horizons of all soils. From these results, it was recognized that, although total natural contents of heavy metals were the largest in upland soil, surface horizons of field soils became gradually polluted with heavy metals. Especially, Cd(II) is considered as a potential metallic pollutant in field soils because of its weak adsorption strength. Concentrations of heavy metals also seemed to be influenced by their adsorption characteristics. When we computed 0.1HCl$_{ext}$HNCL$_{dig}$ ratios to estimate the adsorption strengths of soil heavy metals, their adsorption strengths decreased on the order of Cu(II) > Zn(II)> Pb(II) > Cd(II). The distribution characteristics of heavy metals in field soil, especially Cd(II),are required more detail study because of its importance of land use and complicated mobilization characteristic.

Behavior of Cadmium, Zinc, and Copper in Soils -II. Effect of Organic Matter Treatment on Mobility of Cadmium, Zinc, and Copper in Soils- (토양내(土壤內) 카드뮴 아연(亞鉛) 및 구리의 행동(行動)에 관한 연구(硏究) -II. 토양내(土壤內) 카드뮴 아연(亞鉛) 및 구리의 이동(移動)에 미치는 유기물처리(有機物處理)의 영향(影響)-)

  • Yoo, Sun-Ho;Hyun, Hae-Nam
    • Applied Biological Chemistry
    • /
    • v.28 no.2
    • /
    • pp.76-81
    • /
    • 1985
  • Miscible displacement techniques were used to investigate the influence of the organic matter treatment on the mobility of Cd, Zn, and Cu through soil columns. The heavy metals moved most readily through the Bonryang soil (Typic Udifluvents) of relatively low in CEC, pH, and organic matter content. Most parts of Cd and Zn eluted within 7 pore volumes, but Cu eluted between 5 and 15 pore volumes. Although the Gangseo soil (Aquatic Eutrochrepts) had lower in CEC and organic matter content than the Gyorae soil (Typic Distrandepts), the heavy metals moved faster through the Gyorae soil than through the Gangseo soil. Cu eluted more slowly and in smaller quantities than Cd and Zn from the Bonryang soil, but did not eluted from the Gangseo and the Gyorae soils at all during the experimental period. The motility of the heavy metals from the Bonryang and the Gangseo soils was in the order of Cd>Zn>Cu, but that of the Gyorae soil was in the order of Zn>Cd>Cu. Cd and Zn eluted after 5 and 20 pore volumes respectively, from the Bonryang soil treated with 3% compost but Cu did not elute even after 30 pore volumes were collected. By 7% compost treatment only small amountssof Cd eluted after 20 pore volumes. The liming of the Bonryang soil retarded the mobility of Cd, Zn, and Cu. Humic acid treatment did not reduce the motility of the Cd and Zn to the extent observed in the Bonryang soil with compost, but reduced a little motility of Cu.

  • PDF

The Effects of pH Control on the Leaching Behavior of Heavy Metals within Tailings and Contaminated Soils : Seobo and Cheongyang Tungsten Mine Areas (광미와 오염토양 내 중금속 용출특성에 미치는 pH영향 : 청양과 서보중석광산)

  • 이평구;강민주;박성원;염승준
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.469-480
    • /
    • 2003
  • Laboratory leaching experiment study carried out to estimate a extent of heavy metals that could be leached out when acid rain(pH 5.0-3.0) and strong acidic solution(pH 2.5-1.0) reacted with tailings and contaminated soils from abandoned metal mines. In slightly to moderately acid conditions(pH 5.0-3.0), As, Pb and Zn dissolutions became significantly increased with decreased pH in tailing, while dissolution of these elements was very limited in contaminated soil. These results suggested that moderately acid rainwater leaches Pb, As and Zn from the tailings, while these elements would remain fixed in contaminated soil. In the pH range of 2.5-1.0(strongly acid condition), Zn, Cd and Cu concentrations of leachate rapidly increased with decreased pH in contaminated soil, while Pb, As and Co dissolutions became importantly increased in tailings. The experimental solubility of Zn. Cd and Cu was very low even at very low pH values(up to pH 1), except for CY4(Cheongyang mine). These can result from an incomplete dissolution or the presence of less soluble mineral phases. So, the solubility of heavy metals depends not only on the pH values of leachate but also on the speciation of metals associated with contaminated soils and tailings. The relative mobility of each element within failings at the pH 5.0-3.0 of the reaction solution was in the order of Pb>Zn>Cd>Co=Cu>As. In case of pH 2.5-1.0 of the reaction solution, the relative mobility of each element within contaminated soils and tailings were in the order of Zn>Cd>Cu>Co>Pb=As for contaminated soils, and Pb>Zn>Cd>hs>Co>Cu for tailings. The obtained results could be useful for assessing the environmental effects and setting up the restoration plan in the areas.

Remediation of Heavy Metal Contamination in OBOD Site with Soil Washing : Selection of Extractants (토양세척법에 의한 중금속오염 폐탄처리장 토양의 정화 : 세척액의 선정)

  • Lee, Sang-Hwan;Kim, Eul-Young;Seo, Sang-Kee;Kim, Gweon-Bo;Kim, Jae-Hwan;Lee, Jong-Keun
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.2
    • /
    • pp.44-53
    • /
    • 2008
  • The efficiences of mineral acid (HCl), neutral salts ($CaCl_2$), and chelating agent (citric acid and $Na_2$-EDTA) were tested for extracting heavy metals from open burning and open detonation (OBOD) site soil. The extraction efficiencies of Cd, Cu, Pb and Zn from soil for various extractants were in the order of HCl > citric acid > $Na_2$-EDTA > $CaCl_2$, HCl (1.0 M) extracted effectively 82%, 86%, 80%, and 46% of initial total concentrations of Cd, Cu, Pb, and Zn, respectively. Significant negative correlations were observed between pH of extractant and amount of extracted heavy metals. Initially, examined heavy metals were predominantly bound to carbonate and Fe, Mn-oxide fraction. Though the significant amount of carbonate and Fe, Mn-oxide bounded metals were removed but a significant amount remained metals shifted to exchangeable (more mobile) fraction by HCl and citric acid extraction. The increased mobility of remaining metals could be problematic for water resources, thus careful management is needed to control the movement of heavy metals.

Mineralogical Changes Caused by the Weathering of Tailings Deposited on the Riverside of the Nakdong River, Bonghwa, Korea (봉화군 일대 낙동강변에 퇴적된 광미의 풍화에 따른 광물학적 변화)

  • Kim, Min-Jung;Kim, Yeong-Kyoo;Park, Hyoung-Sim;Jeon, Sang-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.331-339
    • /
    • 2008
  • In the upstream of Nakdong river in Bonghwa-gun, Gyeongsangbuk-do, certain areas of riverside were found to be covered by weathered mine tailings which were assumed to be migrated and deposited by flood. This study was conducted to investigate the formation and characteristics of the secondary minerals from tailings and related leaching behavior of heavy metals in the severely weathered tailing deposits by river waters. Quartz, feldspar, micas, chlorite, hornblende, talc, pyroxene (johannsenite), pyrite, and calcite were identified as primary minerals by XRD. Kaolinite can be formed by the weathering of tailings, but considering the short period of weathering time, kaolinite in the deposits is considered to be from unweathered tailings or moved from soils. The secondary minerals such as goethite, gypsum, basanite, and jarosite were also identified. The formation of the secondary minerals was affected by the species of primary minerals and pH conditions. The weathering of pyrite produced sulfate minerals such as gypsum, basanite, jarosite, and also goethite. Mn oxide was also identified by SEM, coated on the primary minerals such as quartz. This Mn oxide was poorly crystalline and thought to be the weathering product of johannsenite (Mn-pyroxene). The Fe and Mn oxides are the main minerals determining the brown/red and black colors of weathered tailings. EDS results showed that those oxides contain high concentrations of Pb, Zn, and As, indicating that, in the river, the formation of Fe and Mn oxides can control the behavior and leaching of heavy metals by co-precipitation or adsorption.