• Title/Summary/Keyword: 중금속 분석

Search Result 1,277, Processing Time 0.031 seconds

Feasibility Test for Phytoremediation of Heavy Metals-Contaminated Soils using Various Stabilizers (중금속 오염토양에 대한 안정화 및 식물상 정화공법의 동시 적용연구)

  • Jeon, Jongwon;Bae, Bumhan;Kim, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.59-70
    • /
    • 2012
  • In this study, to select the best stabilizer for the heavy metals-contaminated soil from a smelter area during phytoremediation, a plant uptake experiment and a soil stabilization were simultaneously applied using Pteris multifida Poir. and five pre-screened stabilizers(zeolite, Mn dioxide, slag, Ca oxide, and magnetite). The extracted heavy metal was measured and compared using a 3 step sequential extraction for the soil samples. The growth rate of the plant was also evaluated. The stabilizers stabilized heavy metals in soil and reduced the extraction rate. Magnetite and calcium oxide showed better results than other stabilizers. The stabilizers enhanced the growth of the plant. All the heavy metals except for arsenic were concentrated in roots while arsenic was concentrated in leaves of the plant. It is concluded that the stabilizers can minimize the heavy metal release from the contaminated soil during phytoremediation and stimulated the growth of plant. These effects of stabilizers could compensate for some weak points of phytoremediation such as reaching of heavy metals by rainwater.

Heavy Metal Contents In Tissues of Carassius auratus In Andong and Imha Reservoir (안동.임하호에 서식하는 붕어(Carassius auratus) 조직 내 중금속 함량)

  • Kim, Jeong-Sook;Shin, Myung-Ja;Lee, Jong-Eun;Seo, Eul-Won
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1562-1567
    • /
    • 2009
  • Heavy metal contamination levels in Andong reservoir and Imha reservoir were measured with heavy metal contents in both water and sediment, and analyzed with heavy metal accumulation level in inhabitant fish, Carassius auratus, using an inductively coupled plasma spectrometer and an atomic absorption spectrometer. High levels of heavy metal contents in water, sediment and the tissues of C. auratus were detected. Likewise, relatively high levels of As were detected in water and sediment from Andong reservoir. In addition, higher levels of Cr, Cu, Cd and As content were detected in muscle and bone tissues of fish from Andong reservoir than those from Imha reservoir. As a result, the heavy metal content of water, sediment and inhabitant fish, C. auratus, in Andong reservoir was higher than Imha reservoir. We proposed that heavy metal contamination in water and inhabitant fish is attributed to various metals derived from abandoned mines and farmlands that are upstream of Andong reservoir.

Plant Growth-promoting Bacteria for Remediation of Heavy Metal Contaminated Soil: Characteristics, Application and Prospects (중금속 오염 토양 정화를 위한 식물생장촉진세균: 특성, 활용 및 전망)

  • Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.399-422
    • /
    • 2020
  • Remediating soils contaminated with heavy metals due to urbanization and industrialization is very important not only for human health but also for ecosystem sustainability. Of the available remediation technologies for heavy metal-contaminated soils, phytoremediation is a relatively low-cost environment-friendly technology which preserves biodiversity and soil fertility. The application of plant growth-promoting bacteria (PGPB) during the phytoremediation of heavy metal-contaminated soils can enhance plant growth against heavy metal toxicity and increase heavy metal removal efficiency. In this study, the sources of heavy metals that have adverse effects on microorganisms, plants, and humans, and the plant growth-promoting traits of PGPB are addressed and the research trends of PGPB-assisted phytoremediation over the last 10 years are summarized. In addition, the effects of environmental factors and PGPB inoculation methods on the performance of PGPB-assisted phytoremediation are discussed. For the innovation of PGPB-assisted phytoremediation, it is necessary to understand the behavior of PGPB and the interactions among plant, PGPB, and indigenous microorganisms in the field.

Stabilization of Heavy Metals using Ca-Citrate-Phosphate Solution: Effect of Soil Microorganisms (구연산/칼슘/인산염 용액을 이용한 토양 중금속 안정화: 토양 미생물이 미치는 영향)

  • Song, Ho-Cheol;Song, Doo-Sup;Cho, Dong-Wan;Park, Sung-Won;Choi, Sang-Hun;Jeon, Byong-Hun;Lee, Jang-Ho;Park, Joon-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.241-248
    • /
    • 2009
  • A farming area located near an abandoned copper mine in GuPo-ri, Choongchung province is heavily contaminated with heavy metals such as As, Pb, Cd, Cu and Zn of which concentrations are higher than the values typically detected in Korean soil environment. In this work, laboratory and field studies were conducted to examine feasibility of using Ca-citrate-phosphate solution in stabilizing heavy metals in the polluted soils. In laboratory batch experiments with field soil, the addition of Ca-citrate-phosphate solution resulted in decrease of aqueous phase concentration of phosphate and improvement of heavy metal stabilization, compared to those for sterilized soil samples. This indicates that microbial uptake of phosphate may have provided positive effects on availability of phosphate toward heavy metal stabilization. According to microbial community analysis for the field experiment, the use of Ca-citrate-phosphate led to increased diversity of microbial populations, and strict anaerobic microorganisms such as Anaerofilum and Treponema became the most dominant populations in the solution-amended field experiments. These findings suggest that, when Ca-citrate-phosphate is used for heavy metal stabilization in soils, microbial processes may have important roles in improving the stabilization of heavy metals by providing reducing conditions to the treatment locations or/and by making phosphate available to heavy metal stabilization.

Analysis of Water Quality and Heavy Metals for Surface Water and Sediments of Upstream and Midstream in Nakdong River (낙동강 중 · 상류지역 하천의 표류수 및 퇴적층의 중금속 및 수질분석)

  • Ri, Chang Seop
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.6
    • /
    • pp.547-555
    • /
    • 2000
  • The surface water in the upstream and midstream of Nakdong river, which is being used as tap water and industrial water supply in Daegu city and Kyungpook province, was analyzed in its water quality. In addition, the sediments of which was analyzed in terms of heavy metal and organic substance contents. All the sampling was done in the drought season for 2 days of June 22-23 and carried out in 10 sampling sites. The sites cover the whole Kyungpook provincial region, starting from Yangsam Bridge in Chyeong Ryang Provincial Park as the upper end, to the Ko Ryung Bridge as the lower end sampling site of Nakdong river that flows through Kyungpook province. The 22 items including $NH^{+}_{4}$, $NO^{-}_{2}$ and COD were analyzed for surface water and 11 items including organic constituents(trichloroethylene, etc) and heavy metals were analyzed for sediments. The sediments samples were analyzed by elution testing method and acid dissolution method and then the results were compared with each other. All heavy metals in samples were determined by Inductively Coupled Plasma-Atomic Emission Spectroscopy(ICP-AES) and other constituents were analyzed by standard testing methods of the Korean Ministry of Environment.

  • PDF

The Predicting Environmental Fate of Cd, Cu, and Pb by Sequential Fractionation in Mine Tailings and Agricultural Soils

  • Lee, Do-Kyoung;Chung, Doug-Young;Park, Mi-Sun;Lee, Seung-Kil
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.195-200
    • /
    • 1998
  • 토양내에 있어 중금속의 총량 분석만으로는 오염 토양에 대한 환경 평가를 위한 충분한 자료가 되지 못한다. 또한 중금속의 토양내 위해성은 중금속과 토양과의 화학적 상호작용에 의해 결정되기 때문에 중금속의 화학적 형태를 규명하는 것은 토양 환경에 있어서 그들의 이동성과 거동 특성을 평가하는데 중요한 자료가 된다. 연속 추출법은 구봉 광산의 광미로 부터 Cd, Cu, Pb을 화학적 형태에 따라 분리하고, 인위적으로 중금속을 포화시킨 광미와 두밭토양에 있어 중금속의 토양내 거동 특성을 예측하기 위하여 이용되었다. 광미중 Pb의 대부분은 Fe-Mn oxide, carbonate의 결합 형태로 존재하였으며, Cu와 Cd은 각각 71.8%와 42.9%가 유기물, carbonate의 결합형태로 존재하였다. 상당량의 Cd(94.9%), Cu(95.1%), 그리고 Pb(85.8%)은 토양내 잠재적으로 이동 가능한 형태로 존재하였다. 유성과 논산의 밭토양 에 가해진 Cd는 대부분 이동성이 가장 높은 치환태로 존재하였으며, 유성과 논산 토양에서 각각 67.9%와 93.2%가 치환태로 존재하였다. 토양에 가해진 Cd, Cu, Pb은 대부분 이동이 용이한 형태로 존재하였으며, 토양과의 결합세기는 Pb > Cu > Cd 순으로 감소하였다.

  • PDF

Environmental Pollution and Geochemical Behavior of Heavy Metals in Roadside soil and Settling Particles from Retention Pond, A-71 Motorway, France (프랑스 A-71 고속도로변 토양과 부유퇴적물의 중금속의 지화학적 거동과 오염 연구)

  • 이평구
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.30-38
    • /
    • 1997
  • 고속도로변에 설치된 retention pond는 drainage system의 일부분으로 우기에 빗물의 양을 조절하고 고속도로 노면에서 운반되어 retention pond에 유입된 오염된 입자를 침전, 제거시키기 위해 설치되었다. 빗물에 입자상태로 이동된 납, 아연, 카드뮴를 제거하기 위해 설치된 retention pond의 효과를 평가하기 위해 수리지질학적 연구 및 부유퇴적물의 물리화학적 특징을 규명하기 위한 연구가 수행되었다. 부유퇴적물과 비교하기 위해 심하게 오염된 roadside soil과 오염되지 않은 background soil에 대해서도 연구가 수행되었다. 부유퇴적물의 중금속함량은 background Sologne soil에 비해 원소에 따라 2-8배 높다. 그러나, roadside soil의 중금속함량은 부유퇴적물에 비해 7-26배 높다. Sequential extraction methods를 이용하여 분석한 결과 심하게 오염된 roadside soil에 존재하는 납, 아연, 카드뮴은 대부분 쉽게 용해될 수 있는 상태 (Fraction FII, FIII)로 존재하며 반면에 규산염광물과 수반되는 금속함량의 비율은 매우 낮다. 부유퇴적물에서는 규산염광물과 수반되는 금속함량이 전체 금속함량의 1/3까지 크게 증가한다. Roadside soil 과 부유퇴적물사이의 중금속함량 차이가 매우 큰 것은 중금속의 대부분이 retention pond에 이르기 전에 고속도로변과 배수로 일부에 축적되어 모두 상실하기 때문이다.

  • PDF

Comparison of the Heavy Metal Concentrations of the Soils and Plants at the Serpentine and Rhyolite Resions in Ulsan City (울산시의 사문암 및 유문암 지역 표토와 식물체의 중금속 함량 비교)

  • 김명희;민일식;송석환
    • Korean Journal of Environment and Ecology
    • /
    • v.13 no.2
    • /
    • pp.176-183
    • /
    • 1999
  • 울산지역의 사문암과 유문암 토양 및 쑥과 참억새의 중금속 함량을 비교하기 위하여 중금속 농도를 분석한 결과 사문암 풍화토의 Ni, Cr 및 Co 함량은 매우 높았다. Ni은 1,483~1.524ppm, Cr은 372~435ppm, Co는 68~79ppm였으며, 유문암 풍화토의 Zn 함량은 222ppm으로 사문암 풍화토보다 높았다. 사문암 풍화토에서 생육하는 쑥의 중금속 함량은 Ni이 108~195ppm. Cr이 135~180ppm, Co가 10.2~22.5ppm으로 유문암 풍화토의 쑥보다 높았고, Zn은 유문암 토양 쑥에서 높았다. 참억새의 경우는 Ni, Cr, Co, As, Se, Mo 및 Fe 가 사문암 토양에서 높았고, Zn 흡수는 유문암 토양에서 많았다. 쑥의 중금속 함량은 대체적으로 지상부가 지하부보다 높았으나, 참억새의 경우는 지하부가 높은 경향을 나타내었다. 토양과 식물체(쑥과 참억새)의 중금속 함량을 비교해 보면 Ni, Cr, Co, As, Sc, Mo 및 Fe의 함량은 토양의 식물체보다 높았으나, 유문암 토양에 있는 쑥의 Zn 흡수는 토양보다 다소 높았다. 식물체의 Fe:Ni 비율은 유문암 토양보다는 사문암 토양이, 참억새보다는 쑥이 낮게 나타났다.

  • PDF

HEAVY METALS IN SEDIMENTS FROM JINHAE BAY, KOREA. (진해만 퇴적물중의 중금속 함량)

  • Lee, Soo Hyung;Lee, Kwang Woo
    • 한국해양학회지
    • /
    • v.18 no.1
    • /
    • pp.49-54
    • /
    • 1983
  • sediments were collected from 23 ststions in Jinhae Bay and Cd, Cr, Cu, Fe, Ni, Mn, Pb and Zn were determined by atomic absorption spectrohotometry. The concentrations of Cd, Cr, Cu, Pb and Zn in the sediments decreased gradusally with increasing distance from the gead of Masan Bay, indicating pollutant transport from industrial and municipal wastewaters. But the levels of Co, Fe, Ni and Mn showed no difference througout the bay. analysis of correlation coefficients showed that Cd, Cr, Cu, Pb and Zn in the sediments were [losely associated to one another, whereas co, Fe and Ni were so associated.

  • PDF

Mineralogical Characteristics and Removal of Heavy Metals from Gum-poong Mine Tailings (금풍광산(鑛山) 광물(鑛物)찌꺼기의 광물(鑛物)학적 특성(特性) 및 중금속(重金屬) 제거(除去))

  • Cha, Jongmun;Park, Jayhyun;Kang, Heon Chan
    • Resources Recycling
    • /
    • v.21 no.6
    • /
    • pp.51-57
    • /
    • 2012
  • The objective of this study was to research the mineralogical characteristics and removal of heavy metals of tailings from Gum-poong mine. From the result of mineralogical analysis, there are several sulphide minerals such as chalcocite, aresenopyrite, pyrite, sphalerite and galena. Cd and Zn have a good positive correlation from the statistical relation between Cd and other heavy metals(Cu, Pb, Zn). Residual heavy metals(As, Cd, Cu, Pb, Zn) from the Gum-poong tailings were removed under the warning criteria from the result of froth flotation with K.A.X.(Potassium Amyl Xanthate) and Aerofloat 211.