• Title/Summary/Keyword: 중금속 분석

Search Result 1,277, Processing Time 0.025 seconds

Heavy Metal Contents in Ginseng and Ginseng Products (인삼 및 인삼제품류의 중금속 함량)

  • Hu, Soo-Jung;Kim, Mee-Hye;Park, Sung-Kug;Lee, Jong-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.329-333
    • /
    • 2005
  • Contents of heavy metals, mercury (Hg), lead (Pb), cadmium (Cd), arsenic (As), manganese (Mn), zinc (Zn), and copper (Cu), In ginsengs and ginsengs products their safety were evaluated using a mercury analyzer, atomic absorption spectrophotometer and Inductively coupled plasma spectrometer. Contents of heavy metals in ginsengs were [min-max(mean), mg/kg]; Hg 0.002-0.02(0.007), Pb 0.018-0.39(0.106), Cd 0.004-0.413(0.106), As ND-0.094(0.013), Cu 0.24-5.5(3.2), Mn 3.18-50.4(20.09), Zn 0.76-44.27(13.42). Ginseng products values were; Hg 0.0001-0.002(0.001), Pb 0.001-0.133(0.017), Cd ND-0.07(0.004) As ND-0.181(0.008), Cu ND-1.1(0.13), Mn 0.73-30.15(1.61). Zn 0.02-13.42(1.02), similar to those reported by other countries. Average weekly Intakes of Hg, Pb and Cd from ginseng and ginseng products were 0,003, 0.01 and 0,02% of provisional tolerable weekly intake established by FAO/WHO, respectively. Our result could be utilized as important references to establish the standard of lead in ginseng and ginseng products.

Estimation of Contamination Level of Sediments at the Below of Busan Gwang-an Bridge (부산 광안대교 하부 퇴적토 오염도 평가)

  • Kim, Seog-Ku;Ahn, Jae-Whan;Kang, Sung-Won;Yun, Sang-Leen;Lee, Jungwoo;Lee, Jea-Keun;Lim, Jun-Heok;Kim, Dong-Soo;Lee, Tae-Yoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.809-814
    • /
    • 2013
  • In this study, physical properties and heavy metal contents of sediments obtained from the bottom of Gwangan bridge were measured to determine pollution level of the sediments. From the results of the oxide contents of the sediments, $SiO_2$ was decreased as the sampling points became more distant from the stream of river. On the contrary, CaO showed opposition aspect to $SiO_2$. Ignition loss of sediments ranged from 7.2 and 14.3% and 0.9 and 5.5% for TOC. For EPA guidelines of ignition loss, all sampling points were classified as heavily polluted areas. When TOC was considered, all areas were classified as lowest effect level except for GW7 where classified as no effect level. All areas were free of heavy metal contamination evaluated by USEPA and Canadian guidelines. However, all areas were classified as heavily contaminated areas due to the high value of ignition loss when USEPA was used.

Effects of Fly Ash on Heavy Metal Contents in Percolated Water of Paddy Soil (석탄회 시용이 논 토양수중의 중금속성분 용출에 미치는 영향)

  • Kim, Yong Woong;Yoon, Chung Han;Shin, Bang Sup;Kim, Kwang Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.236-242
    • /
    • 1996
  • This study was conducted to investigate the changes of heavy metals in percolated water of paddy soil in which rice was cultivated in conditions of 0%, 5%. 30% addition of bituminous and anthracite fly ash respectively. In cultivated plot, the contents of Fe in percolated water increased gradually during the cultivation. But there was no sharp difference of Fe contents in fly ash treated plots. The contents of Mn in percolated water increased gradually during the cultivation and was high in the cultivated plot. But difference in the contents of Mn among plots not clear. The contents of Zn in percolated water was highest during 20-25 days in the cultivation, thereafter decreased gradually. The fly ash did not cause to increase the contents of Zn in percolated water. The contents of Cu in percolated water decreased through the cultivation. Fly ash treatment did not cause to increase the contents of Cu in percolated water. The contents of Pb in percolated water decreased gradually over the cultivation. Fly ash treatment did not largely influence to Pb percolation. In mid-July. Pb did not almost appeared in percolated water. The contents of Cd was highest about 15 days of the transplant, thereafter decreased gradually. After 40 day of the cultivation, leach of Cd stopped. When fly ashes were applied in paddy soil, the contents of heavy metals in percolated water was not so much compared with control plot. It seems that originally low contents of heavy metals in fly ash and decrease in solubility of heavy metals in a relatively high soil pH make it possible to use fly ash as a soil conditioner.

  • PDF

Stress Evaluation to Heavy Metal Exposure using Molecular Marker in Chironomus riparius (분자지표 유전자 발현을 통한 Chironomus riparius 중금속 노출 스트레스 평가)

  • Kim, Won-Seok;Park, Kiyun;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.2
    • /
    • pp.165-172
    • /
    • 2020
  • Heavy metals are common pollutants in the freshwater environment and have toxicological effect in habitat organisms. The heavy metals highly accumulated in sediment and organism, and observed various physiological responses. In this study, we investigated the molecular response to heavy metal toxicity (Al, Aluminum; Cr, Chromium; Cu, copper; Mn, Manganese; Zn, Zinc) through expression of heat shock protein 40, 70, 90 (HSP40, 70, 90), cytochrome 450 (CYP450), Glutathione S-transferase (GST) and Serine-type endopeptidase (SP). HSPs showed up-regulation in Cu and Zn exposures. Furthermore, HSPs expression in treated groups tended to be higher than the control group. The tendency of CYP450 and GST mRNA expression was higher for Cr and Cu than for other exposure group. The expression of SP gene was low at Al exposure and other group were measured to be similar to control. These results suggest that heavy metal toxicity in freshwater ecosystem may affect physiological and molecular process. Also, the comprehensive gene expression in the aquatic midge Chironomus riparius give useful information to potential molecular biomarkers for assessing heavy metal toxicity.

Toxic Effects of Metal Plating Wastewater on Daphnia magna and Euglena agilis (Daphnia magna와 Euglena agilis를 이용한 도금폐수 독성평가)

  • Lee, Junga;Park, Da Kyung
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.2
    • /
    • pp.116-123
    • /
    • 2016
  • The ecotoxicity tests for metal plating wastewater were conducted using Daphnia magna (D. magna) and Euglena agilis (E. agilis). Evaluation for sources of toxicity was performed by 1) Correlation analysis between the concentration of individual metals in the metal plating wastewater and the toxic effects on D. magna, 2) Toxicant identification evaluation methods including graduated pH method, EDTA procedure and sodium thiosulfate procedure, 3) Comparison of toxic effect value ($EC_{50}$ or $LC_{50}$) of individual metal on D. magna and it's concentration in the metal plating wastewater. To evaluate the possibility of E. agilis, a Korean domestic organism, as a test model organism for metal plating waste water, E. agilis toxicity test was also assessed using on-line euglena ecotoxicity system (E-Tox system). Based on toxicant characterization test using D. magna, it was expected that SS, oxidants and heavy metals are responsible for toxicity of metal plating waste water. Especially Cu, Hg, and Ag were the major cationic metals that caused toxicity. E. agilis is less sensitive than D. magna based on the $EC_{50}$ value however it shows prompt response to toxic test substances. E. agilis shows even a significant effect on the cell swimming velocity within 2 min to toxic metal plating wastewater. Our study demonstrates that E. agilis test can be a putative ecotoxicity test for assessing the quality of metal plating waste water.

Evaluation of Heavy Metal Contents in Mudflat Solar Salt, Salt Water, and Sea Water in the Nationwide Salt Pan (전국 염전에서 생산된 갯벌천일염, 함수 및 해수의 중금속 함량 평가)

  • Kim, Hag-Lyeol;Yoo, Young-Joo;Lee, In-Sun;Ko, Gang-Hee;Kim, In-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.7
    • /
    • pp.1014-1019
    • /
    • 2012
  • This study was conducted to evaluate the heavy metal contents of mudflat solar salt, salt water, and sea water produced in the nationwide salt pan. In mudflat solar salt, moisture contents were significantly different (p<0.001) between regions, ranging from 7.357% to 14.862%. Arsenic (As) content ranged from 0.007 ppm to 0.497 ppm, cadmium (Cd) from 0.000 ppm to 0.101 ppm, plumbum (Pb) from 0.000 ppm to 0.191 ppm, hydrargyrum (Hg) from 0.006 ppb to 0.180 ppb, and copper (Cu) from 0.039 ppm to 4.794 ppm between regions, which were significantly different (p<0.001). Further, As, Cd, Pb, and Hg contents of sea and salt water were not in excess of their criterion points. Our results suggest that heavy metal contents of mudflat solar salt, salt water, and sea water produced in the nationwide salt pan were at safe levels. However, continuous management of heavy metal contamination, such as PVC met, is still necessary.

Study on the Mineral and Heavy Metal Contents in the Hair of Preschool Aged Autistic Children (자폐아동 모발에서의 미네랄 및 중금속 함량에 관한 연구)

  • Jung, Myung-Ae;Jang, Hyun-Seo;Park, Eun-Ju;Lee, Han-Woo;Choi, Jeong-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.11
    • /
    • pp.1422-1426
    • /
    • 2008
  • The purpose of this study was to test characteristics between normal and autistic children via comparison of nutrient intakes, hair mineral, blood free radical, and serotonin contents. A total of 50 children aged 3-9 were divided into two main groups of normal control children (n=22) and autistic children (n=28) tested by child psychiatrist. The nutrient intakes by 24-hour recall method were no significantly different between the two groups. The concentrations of toxic mineral, such as cadmium (Cd) and lead (Pb) in hair of autistic children were significantly higher, while concentration of antioxidant mineral (Cu, Zn, Fe) was lower than that of normal children. The autistic children had significantly higher concentrations of blood free radical than that of normal children. No significant difference was observed in serotonin concentration between the two groups. Our results suggest a possible role of increased toxic mineral and free radical, both of which may be relevant to the pathophysiology of autism in children with developmental delay.

Heavy Metal Adsorption Capacity of Zoogloea ramigera 115 and Zoogloea ramigera l15SLR. (Zoogloea ramigera 115와 Zoogloea ramigera l15SLR의 중금속 흡착능 비교)

  • Lee, Han-Ki;Bae, Woo-Chul;Jin, Wook;Jung, Wook-Jin;Lee, Sam-Pin;Jeong, Byeong-Chul
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.1
    • /
    • pp.83-88
    • /
    • 1998
  • Heavy metal removal by Z. ramigera 115 and soluble slime polymer producing mutant Z. ramigera 115SLR was investigated. Both strains showed similar tolerance against $Cd^{2+}$, $Co^{2+}$, $Cu^{2+}$, $Ni^{2+}$ and $Fe^{2+}$. When cells were cultivated in the presence of 500 ppm $Cd^{2+}$, the mutant strain removed 1.5 fold more metal than the wild type did at same biomass. Metal adsorption capacities were in the order of Z. ramigera l15SLR polymer > Z. ramigera 115 polymer > Z. ramigera 115 cell >Z. ramigera l15SLR cell. The optimum pH for metal adsorption was 7.5. Langmuir and Freundlich isotherms indicated that Qmax and 1/n of Z. ramigera l15SLR polymer were 164.2 mg $Cd^{2+}$/g dw and 0.496, respectively. These results showed that the polymer of Z. ramigera l15SLR could be used as an effective metal adsorbate.

  • PDF

A Study on the Adsorption of Heavy Metals by Chitosan Obtained from Shrimp Shell (새우껍질로부터 얻어진 키토산을 이용한 중금속 흡착에 관한 연구)

  • Cha, Wool-Suk;Kim, Jong-Soo;Cho, Bae-Sick;Kim, Chong-Kyun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.504-508
    • /
    • 1998
  • Experimental investigation on the adsorption of heavy metal confounds as $Fe^{2+}$, $Cu^{2+}$, $Mn^{2+}$, $Zn^{2+}$, $Ni^{2+}$, $Pb^{2+}$, $Cd^{2+}$, $Cr^{6+}$ using chitosan was carried out. The adsorption of each component of heavy metal compounds was measured by Atomic Absorption apparatus. The range of optimum pH for the removal rates of heavy metal compounds was found pH 7.0~9.0. The maximum time for the removal rate of $Fe^{2+}$ was observed about 15 min. The maximum time for the removal raters of $Cu^{2+}$, $Mn^{2+}$, $Zn^{2+}$, $Ni^{2+}$, $Pb^{2+}$, $Cd^{2+}$, and $Cr^{6+}$ was observed about 25 min. The adsorption rates of heavy metal compounds by chitosan have been found in the order of $Fe^{2+}>Cu^{2+}>Mn^{2+}>Zn^{2+}>Ni^{2+}>Pb^{2+}>Cd^{2+}>Cr^{6+}$.

  • PDF

Adsorption of Heavy Metal Ions on Sambo Mine Runoff by Barks (수피에 의한 삼보광산 폐수의 중금속 흡착)

  • Ahn, Byoung-Jun;Koh, Kyung-Moo;Lee, Hyung;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.40-47
    • /
    • 2001
  • To remove $Zn^{2+}$(422 ppm) and $Mn^{2+}$(53.1 ppm) from Sambo mine runoff(the total amount of heavy metals : 107 ppm) in Whasung, packed bed column tests were run in two stages plastic columns. The non-treated bark(Pinus densiflora, Quercus accutisima) of each 6 kg were placed into columns. The height and diameter of column were 60 cm and 45 cm, respectively. Flow rate ranged to 1 ${\ell}$/min for 15 days. The concentration of heavy metal ions in filtrate was determinded periodically. By the treatment of oak bark the initial concentration of $Zn^{2+}$ was maintained under 10 ppm(the adsorption rate: 64%) for 24 hr, while pine bark kept the initial concentration of $Zn^{2+}$ under 20 ppm(the adsorption rate: 53%) for 15 hr. However the initial concentration of $Mn^{2+}$ was reduced only to 10.6~18.6 ppm (the adsorption rate: 20~35%) until 10 hr. Thereafter, the adsorption of $Mn^{2+}$ by bark decreased rapidly. There was little difference in the adsorption ratio of $Mn^{2+}$ between oak and pine bark. The use of bark to remove $Zn^{2+}$ in Samba mine runoff was effective, but it wasn't proper to remove $Mn^{2+}$.

  • PDF