• Title/Summary/Keyword: 중공 미세구

Search Result 7, Processing Time 0.022 seconds

A Study on the Preparation of Hollow Microspheres Using Waste Polystyrene (폐 Polystyrene을 이용한 중공 미세구 제조에 관한 연구)

  • Kwon, Soon Young;Woo, Je-Wan
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.205-210
    • /
    • 2006
  • In this study, polystyrene hollow microspheres were prepared via optimized purifying steps for the reuse of waste polystyrene. PS/PVA double layered hollow microspheres were prepared using the multiple emulsion ($W_1/O/W_2$) method with recycled polystyrene. The sonication treatment at the first stage of $W_1/O$ emulsion formation was very important factor of control of particle size and its distribution. When sonication was treated for 20 seconds, the average particle size and distribution were $1.35{\mu}m$ and $0.8{\mu}m{\sim}2.8{\mu}m$, respectively. The double layered hollow microspheres that have smaller and uniformed particle size distribution were manufactured when gelatin or Tween 80 was used as surfactants in the $W_2$ phase.

  • PDF

Effect of the Surfactant Concentration on the Formation of Water Glass-based Porous Hollow Silica Microsphere (Porous한 물유리 기반 실리카 중공 미세구 형성에 대한 계면활성제 농도의 영향)

  • Lee, Jihun;Kim, Younghun;Kim, Taehee;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.79-83
    • /
    • 2021
  • In this study, hollow silica microspheres (HSM) of various sizes formed according to the concentration of surfactants using water glass as a precursor, which is advantageous for commercialization due to its lower unit cost compared to conventional silicon alkoxide (tetraethyl orthosilicate, TEOS) was synthesized. The physical properties of the silica hollow microspheres according to the concentration of surfactant were analyzed using Fourier transform infrared, contact angle measurement, Brunauer-Emmett-Teller and Barrett-Joyner-Halenda analyzers and field emission scanning electron microscopy. When porous water glass-based hollow silica spheres were prepared by adding a surfactant at an appropriate concentration, it was confirmed that excellent hollow silica spheres were formed with a specific surface area of 169 m2/g, an average particle size of 25.3 ㎛, and a standard deviation of 6.25.

A Study on the Properties of Hollow Silica Microspheres for Controlled-release Pesticide Formulation (농약 방출 조절제 소재로서 실리카 중공 미세구의 물성연구)

  • Jung, Byoung-Soo;Park, Yong-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.4
    • /
    • pp.319-324
    • /
    • 2004
  • Pesticide formulations for controlled release were pepared with hollow silica microspheres. The hollow microsphere, which was obtained through calcination for the core removed after silica coating, showed maximum impregnation of benfuracarb up to 2.7 times of its mass in comparison with those obtained through the other core removal method. The release test of the pesticide formulation, when used with ESO(Epoxidized Soybean Oil) as a binder, showed ideal release pattern with steady release rate from the day 10 to 30 retaining the benfuracarb concentration in the water around 1.65 ppm.

A Study on the Preparation of PBAST/PVA Double Layered Hollow Microspheres (PBAST/PVA 이중층 중공미세구의 제조에 관한 연구)

  • Song, Myung-Sook;Woo, Je-Wan
    • Clean Technology
    • /
    • v.14 no.4
    • /
    • pp.256-264
    • /
    • 2008
  • In this study, using PBAST (poly(butylene adipate-co-succinate-co-terephthalate)) which was eco-friendly biodegradable aliphatic polyester, PBAST/PVA (poly(vinyl alcohol)) double-layered hollow microspheres were prepared with the water/oil/water multiple emulsion ($W_1/O/W_2$) method. The double-layered hollow microspheres were manufactured with the yield of 30.92% when the concentration of polymer PBAST in organic phase was 5 wt%, the concentration of PVA in inner aqueous phase was 5 wt%, the volume ratio of $W_1/O$ emulsion to outer aqueous phase was 1:4.5, and when co-surfactants that had large gap in HLB (hydrophile-lipophile balance) value were used. The bulk density of prepared hollow microsphere was 0.180 g/ml and particle size was $1.5{\sim}3\;{\mu}m$.

  • PDF

A Study on the Preparation of MnO2 Hollow Microspheres (MnO2 중공 미세구의 제조에 관한 연구)

  • Moon, Jin Hee;Park, Yong Sung
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.648-652
    • /
    • 2006
  • Demand for $MnO_{2}$ has been increased with interest for its various applications in the fields of battery, catalyst, and capacitor. In this study, $MnO_{2}$ hollow microspheres were synthesized by sacrificial core method. $MnO_{2}$ nano particles were produced by the hydrolysis and condensation of manganese acetate. The stable $MnO_{2}$ hollow microspheres can very well be synthesized with mixing 0.2% of water, 0.65 mM of manganese acetate, and 0.02 mM catalyst at a room temperature.

Chemotactic Cell Migration around Hollow Silica Beads Containing Chemotatic Reagent (약물 담지 다공성 중공 실리카 미세구 주위 세포의 주화성 이동)

  • Kim, Hae-Chun;Kang, Mi-Seon;Rhee, Seog-Woo
    • KSBB Journal
    • /
    • v.25 no.4
    • /
    • pp.344-350
    • /
    • 2010
  • This paper demonstrates a microfluidic chip incorporating patterned hollow silica beads that can be effectively used for chemotaxis assay. The hollow silica bead has been exploited to develop a carrier for chemoattractant to induce cell migration. The microfluidic chip contains a patterned array of microfabricated docks which can hold only one bead per docking site. The hollow bead placed inside microfluidic chip releases chemotactic reagent (PDGF-BB) around its periphery in a controlled fashion which generates a signal for chemotatic migration of fibroblast cells. The number of cells migrated close to each bead has been assessed. On-chip cell migration assay showed a remarkable result proving the high efficiency and reliable accuracy in quantitative analysis. Therefore, the device could be extensively used in cell migration assay and other various studies related to cellular movements.

Investigation on the Pore Properties of the Microcellular ZrO2 Ceramics Using Hollow Microsphere (중공형 미세구를 이용한 마이크로셀룰라 지르코니아의 가공 특성 고찰)

  • Lee, Eun-Jung;Song, In-Hyuek;Kim, Hai-Doo;Kim, Young-Wook;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.108-115
    • /
    • 2009
  • In this study, a novel-processing route for producing microcellular zirconia ceramics has been developed. The proposed strategy for making the microcellular zirconia ceramics involves hollow microsphere as a pore former which has extremely low density of $0.025\;g/cm^3$. Effects of hollow microsphere content and sintering temperature on microstructure, porosity, pore distribution, and compressive strength were investigated in the processing of microcellular zirconia ceramics. By controlling the content of hollow microsphere, it was possible to make the porous zirconia ceramics with porosities ranging from 45% to 75%. Typical compressive strength value of microcellular zirconia ceramics with ${\sim}65%$ porosity was over 50 MPa. By adjusting the mixing ratio of large and small zirconia powders, it was possible to control the pore structure from close to open pores.