• Title/Summary/Keyword: 중공 교각

Search Result 57, Processing Time 0.024 seconds

Ductility Evaluations of Internally Confined Hollow CFT Column (내부 구속 중공 CFT 교각의 연성도 평가)

  • Kim, Hyun-Jong;Youm, Enug-Jun;Han, Taek-Hee;Kang, Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.683-687
    • /
    • 2007
  • Internally Confined Hollow-Concrete Filled Tube(ICH-CFT) column which has two tubes on both side of concrete, inner tube and outer tube perform great seismic abilities, ductility and absorption of energy, by the tubes and the hollow pmt. So this study does qualitative analysis about seismic capacities depending on parameters diameter of column, hollow ratio, thickness of tubes - by moment-curvature analysis.

  • PDF

Seismic Performance and Flexural Over-strength of Hollow Circular RC Column with Longitudinal Steel Ratio 2.017% (축방향철근비 2.017%인 중공 원형 RC 기둥의 내진성능과 휨 초과강도)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Three small scale hollow circular reinforced concrete columns with aspect ratio 4.5 were tested under cyclic lateral load with constant axial load. Diameter of section is 400 mm, hollow diameter is 200 mm. The selected test variable is transverse steel ratio. Volumetric ratios of spirals of all the columns are 0.302~0.604% in the plastic hinge region. It corresponds to 45.9~91.8% of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by seismic concept. The longitudinal steel ratio is 2.017%. The axial load ratio is 7%. This paper describes mainly crack behavior, load-displacement hysteresis loop, seismic performance such as equivalent damping ratio, residual displacement and effective stiffness and flexural over-strength of circular reinforced concrete bridge columns with respect to test variable. The regulation of flexural over-strength is adopted by Korea Bridge Design Specifications (Limited state design, 2012). The test results are compared with nominal strength, result of nonlinear moment-curvature analysis and the design specifications such as AASHTO LRFD and Korea Bridge Design Specifications(Limited state design).

Initial Shear Strength of Hollow Sectional Columns Subjected to Lateral Force (횡하중을 받는 RC 중공단면 기둥의 초기전단강도)

  • Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.1-14
    • /
    • 2009
  • Ductility-based seismic design is strongly required for the rational and cost-effective design of RC piers, and a reliable evaluation of shear strength is indispensable for its success. Unlike the flexural behavior of RC columns, shear behavior is highly complex, due to its many effects such as size, aspect ratio, axial force, ductility and so on. To address this, many design and empirical equations have been proposed considering these effects. However, these equations show significant differences in their evaluation of the initial shear strength, and the reduction in strength with the increase of ductility. In this study, the characteristics of initial shear strength of hollow sectional columns were investigated using experiments with the parameters of aspect ratios, void ratios, web area ratios and load patterns. The test results were analyzed through a comparison with the values predicted by empirical equations. On the basis of the mechanical characteristics and test results, a new empirical equation was proposed, and its validity was assessed.

Hollow Reinforced Concrete Bridge Column Systems with Reinforcement Details for Material Quantity Reduction: I. Development and Verification (물량저감 철근상세를 갖는 중공 철근콘크리트 교각 시스템: I. 개발 및 검증)

  • Kim, Tae-Hoon;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • The purpose of this study was to investigate the performance of hollow reinforced concrete bridge column systems with reinforcement details for material quantity reduction. The proposed reinforcement details have economic feasibility and rationality and make construction periods shorter. A model of hollow reinforced concrete bridge columns was tested under a constant axial load and a quasi-static cyclically reversed horizontal load. As a result, proposed reinforcement details for material quantity reduction were equal to existing reinforcement details in terms of required performance. The companion paper presents the experimental and analytical study for the performance assessment of hollow reinforced concrete bridge column systems with reinforcement details for material quantity reduction.

A Parameter Study of Internally Confined Hollow Reinforced Concrete Piers (내부 구속 중공 RC 교각의 매개변수 연구)

  • Choi, Jun-Ho;Yoon, Ki-Yong;Han, Taek-Hee;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.59-62
    • /
    • 2007
  • The hollow RC(Reinforced concrete) pier has decrease of weight and reduced of materials compared to solid RC pier. However, the hollow RC pier shows a low ductile behavior due to brittle failure of inside concrete. To overcome this problem, the internally confined hollow reinforced concrete column has been developed. In this study, the behavior of internally confined hollow RC piers were evaluated with safety ratio, ductility, total material cost, the total weight of the pier, etc. The chosen parameters for the study are hollow ratio, thickness of internal steel tube, intervals between vertical re-bars, numbers of horizontal re-bars, and strength of concrete.

  • PDF

Ductility performance of hollow-section reinforced concrete piers using high-strength reinforcing bars (중공단면 고강도 철근 콘크리트 교각의 연성거동에 관한 실험적 연구)

  • Oh Byung Hwan;Park Dae Gyun;Cho Keun Ho;Shin Yong Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.730-733
    • /
    • 2004
  • Three Hollow RC piers were tested under a constant axial load and a cyclically reversed horizontal loadto investigate the structural behavior of hollow RC piers using the high strength concrete and the high strength rebars. The test variables include concrete compressive strength, steel strength, and steel ratio. The test results indicate that RC piers using the high strength concrete and high strength rebars exhibit ductile behavior and appropriate seismic performance, in compliance with the design code. The present study allows more realistic application of high strength rebars and concrete to RC piers, which will provide enhanced durability as well as more economy.

  • PDF

New Hollow RC Bridge Pier Sections with Triangular Reinforcement Details: I. Development and Verification (삼각망 철근상세를 갖는 새로운 중공 철근콘크리트 교각단면: I. 개발 및 검증)

  • Kim, Tae-Hoon;Lee, Seung-Hoon;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.109-120
    • /
    • 2015
  • The purpose of this study was to investigate the performance of new hollow reinforced concrete (RC) bridge pier sections with triangular reinforcement details. The proposed triangular reinforcement details are economically feasible and rational and facilitate shorter construction periods. A model of pier sections with triangular reinforcement details was tested under quasi-static monotonic loading. As a result, proposed triangular reinforcement details was equal to existing reinforcement details in terms of required performance. In the companion paper, the parametric study for the performance assessment of new hollow RC bridge pier sections with triangular reinforcement details is performed.

New Hollow RC Bridge Pier Sections with Triangular Reinforcement Details: II. Parametric Study (삼각망 철근상세를 갖는 새로운 중공 철근콘크리트 교각단면: II. 매개변수 연구)

  • Kim, Tae-Hoon;Kim, Ho-Young;Son, Je-Kuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.121-132
    • /
    • 2015
  • The purpose of this study is to investigate the behavior characteristics of new hollow reinforced concrete (RC) bridge pier sections with triangular reinforcement details and to provide the details and reference data. Among the numerous parameters, this study concentrates on the shape of the section, the reinforcement details and the spacing of the transverse reinforcement. Additional eight column section specimens were tested under quasi-static monotonic loading. In this study, the computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used. A innovative confining effect model was adopted for new hollow bridge pier sections. This study documents the testing of new hollow RC bridge pier sections with triangular reinforcement details and presents conclusions based on the experimental and analytical findings.

Experimental Research for Seismic Performance of Circular Hollow R.C. Bridge Pier (원형중공 콘크리트 교각의 내진성능에 대한 실험적 연구)

  • 한기훈;이강균;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.671-676
    • /
    • 1999
  • Because of relatively heavy dead weight of concrete itself and unavoidable heat of massive concrete in bridge piers, circular hollow columns are widely used in Korean highway bridges. Since the occurrence of 1995 Kobe earthquake, there have been much concerns about seismic design for various infrastructures, inclusive of bridge structures. It is, however, understood that there are not much research works for nonlinear behavior of circular hollow columns subjected to earthquake motions. The ultimate of this experimental research is investigate nonlinear behavior of circular hollow reinforced concrete bridge piers under the quasi-static cyclic load, and then to enhance their ductility by strengthening the plastic hinge region with glassfiber sheets. It is concluded from quasi-static tests for 7 bridge piers that energy dissipation capacity and curvatures for a given displacement ductility factor $\{\mu}=frac{\Delta}{\Delta_y}$are about 20% higher for the seismically designed columns and about 70% higher for the retrofitted piers than the nonseismically designed columns in a conventional way.

  • PDF

Nonlinear Seismic Analysis for Performance Assessment of Hollow RC Bridge Columns with Reinforcement Details for Material Quantity Reduction (물량저감 중공 철근콘크리트 교각의 성능평가를 위한 비선형 지진해석)

  • Kim, Tae Hoon;Lee, Seung Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.221-230
    • /
    • 2014
  • The purpose of this study is to investigate the seismic performance of hollow RC bridge columns with reinforcement details for material quantity reduction. The proposed reinforcement details provide economy, are rational and shorthen the construction periods. The accuracy and objectivity of the assessment process can be enhanced by using a sophisticated nonlinear finite element analysis program. Solution of the equations of motion is obtained by numerical integration using Hilber-Hughes-Taylor (HHT) algorithm. The adopted numerical method gives a realistic prediction of seismic performance throughout the input ground motions for several test specimens investigated. As a result, the proposed reinforcement details for material quantity reduction develop equal performance to that required for existing reinforcement details.