• Title/Summary/Keyword: 중공부

Search Result 123, Processing Time 0.032 seconds

Structural Characteristics of Pultruded Composite Bridge Deck of Hollow Section (인발성형 중공단면 복합소재 교량 바닥판의 구조적 특성 분석)

  • Lee, Sung Woo;Kim, Byung Suk;Jo, Nam Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.35-43
    • /
    • 2006
  • In this paper, procedures and research results involved in the development of glass reinforced composite bridge deck of hollow section were presented. Laminate design for the 3 cell deck section was performed. Structural characteristics such as serviceability, strength, failure and stability for DB24 load were analytically studied through the finite element analysis for the composite deck plate girder bridge. Composite deck tube was fabricated with pultrusion and extensive tests such as flexural test, girder-connection test, barrier-connection test, compression fatigue test and flexural fatigue test were carried out to evaluate structural behavior experimentally. Also, field load test was conducted for the demonstration plate girder bridge with composite deck and requirements for the strength and serviceability were reviewed.

An Experimental Study on the Vibration and Fire Resistance of Steel Void Deck Plate Slab for Omega-steel plate (오메가형 강판을 중공체로 사용한 데크플레이트 슬래브의 진동 및 내화에 관한 실험적 연구)

  • Kim, Sang-Seup;Ryu, Deog-Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.705-713
    • /
    • 2011
  • This study was conducted to assess the vibration capacity and the fire resistance capacity of a deck plate slab using an omega steel plate as the void deck plate. First, to evaluate the vibration capacity of the deck plate slab after the insertion of the omega steel plate, three 150mm specimens and three 200mm specimens were made using the slab depth as the main variable. Each specimen consisted of an existing deck plate and two specimens, using the topping depth as the variable according to the slab depth. Second, two real-size specimens were made to evaluate the fire resistance capacity. The results of the test showed that the steel-wire-integrated deck plate slab that was inserted in the omega steel plate did not have a vibration problem due to the void deck plate, because the natural frequency was 12.66-14.09 Hz in the vibration test, and each specimen satisfied the appraisal standards for the load capacity, heat block quality, and chloride inhibition for two hours in the fire resistance test. Consequently, the steel-wire-integrated deck plate slab that was inserted in the omega steel plate can be reduced using the concrete volume and can have higher vibration and fire resistance capacities, similar to the existing deck plate.

Effect of Hollow Sphere Size on Heat Shield Properties of hollow TiO2/polyacrylate Composites (중공구의 크기에 의한 hollow TiO2/polyacrylate 복합체의 열차단 특성)

  • Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.690-694
    • /
    • 2021
  • Carbon spheres (CS) were fabricated using glucose as a precursor in the hydrothermal method. Hollow TiO2 (H-TiO2) spheres with 200 nm, 500 nm, and 1,200 nm were synthesized by CS/TiO2 core-shell particles via a sol-gel and calcination method. H-TiO2 spheres with nano and micron sizes were characterized using FE-SEM, HR-TEM, and X-ray diffraction. The CIE color coordinate, solar reflectance, and heat shield temperatures of H-TiO2/polyacrylate (PA) composite film were investigated using a UV-Vis-NIR spectrometer and homemade heat insulation temperature measuring device. H-TiO2/PA composites exhibit excellent thermal insulation since the hollow structure filled with dry air has low thermal conductivity and near infrared light reflecting performance. The thermal insulation increased with increasing the hollow sphere (HS) size on H-TiO2/PA composites. The PA composite film mixed with H-TiO2 filled with 1200 nm HS reduced the heat shield temperature by 26 ℃ compared to that of the transparent glass counterpart.

한국표준형 원전 울진 4호기의 준공과 그 의의

  • 황상철
    • JOURNAL OF ELECTRICAL WORLD
    • /
    • s.281
    • /
    • pp.17-21
    • /
    • 2000
  • 우리나라 전력산업사의 큰 이정표가 될 한국표준형 원전 울진 4호기의 준공식이 지난 2월 24일 경북 울진의 한국전력공사 울진 원자력본부에서 박태준 국무총리, 김영호 산업자원부장관 등 중앙인사와 이의근 경북도지사, 신정 울진 군수 및 지역주민이 참석한 가운데 거행되었다. 1998년 8월 준공된 최초의 한국표준형 원전인 울진 3호기에 이어 두 번째 한국표준형 원전 울진 4호기가 이번에 중공 됨으로써, 1992년 5월 본관기초굴착을 시작한 이래, 7년여의 긴 시간을 거쳐 마침내 우리 기술로 지은 최초의 한국표준형 원자력발전소 건설사업이 완료되었다.

  • PDF

Behavior of Bellow Rectangular RC Piers without Seismic Detailing Subjected to Cyclic Lateral Load (수평 반복하중을 받는 비내진상세 RC 중공구형교각의 거동특성)

  • Kim, Jae-Kwan;Kim, Ick-Hyun;Lim, Hyun-Woo;Lee, Jae-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.263-272
    • /
    • 2003
  • Scaled model tests were carried out to investigate a seismic behavior of reinforced concrete piers with hollow-rectangular section that were not detailed for seismic load. Additional lateral reinforcing bars were not provided that might be required for confinement against earthquake load. Two kinds of reinforcement details were considered for the longitudinal reinforcing bars: lap-spliced and continuous. In the lap-spliced model all longitudinal bars were lapped at the same height in a bottom plastic hinge zone. In the other model all longitudinal bars extended continuously throughout the height. The constructed models were subjected to quasi-static cyclic lateral loading in the presence of the constant vertical load. Limited ductile behavior was observed in the test of lap-spliced model and more ductile behavior was observed in the test of a continuous longitudinal reinforcement model.

An Experimental Study on the Fire Behavior of Two-way Void Slab under Standard Fire with Loading condition (표준화재 재하조건 이방향 중공슬래브의 화재거동에 관한 실험적 연구)

  • Kim, Hyung-Jun;Yeo, In-Hwan;Kim, Heung-Youl;Cho, Kyung-Suk;Kim, Jeong-Hyun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.17-20
    • /
    • 2010
  • 기존의 무량판 구조와 동일한 이방향 슬래브구조인 TVS(two-way void slab)공법은 구조적 하중지지 성능이 불필요한 슬래브 단면상의 중앙부 콘크리트를 제거하여 슬래브의 자중을 줄이고 무량판 구조의 단점을 보완하여 장점을 극대화시킨 구조형식이다. 그러나 이러한 장점을 보유한 공법을 현장적용하기 위해서는 내화성능평가를 통해 화재안전성을 확보하여야 하므로, 이에 대한 화재 실증실험을 수행하여 현장적용을 위한 최소 요구내화 시간에 따른 내화성능 확보방안의 도출이 제시되어야 한다. 이에 본 연구에서는 TVS공법의 실제 스팬길이로 슬래브 피복두께에 따른 화재거동 영향성 분석을 위하여 화재실험을 수행하였다. 하중조건은 고정하중과 적재하중을 고려하여 실험체에 등분포 조건으로 사전재하하였으며, 표준화재조건으로 재하가열 실험을 수행하였다. 슬래브의 화재가열 노출면으로부터의 깊이별 온도변화와 처짐변형 특성을 측정하였으며, KS F 2257-1 평가기준에 의거하여 슬래브의 내화성능을 평가하였다. 실험결과 피복두께 50 mm를 확보할 경우, EPS중공체로 제작한 실험체의 경우 약 2시간정도의 내화성능을 확보할 수 있는 것으로 나타났다.

  • PDF

An Experimental Study on the Static Behavior in Weak Axis of FRP Bridge Deck Filled with a Foam (폼 충전 FRP 바닥판의 약축방향 정적거동 특성에 관한 실험적 연구)

  • Kim, Byeong Min;Zi, Goang Seup;Hwang, Yoon Koog;Lee, Young Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.943-953
    • /
    • 2006
  • We investigated experimentally the static behavior of an orthotropic bridge deck which is made from glass fiber reinforced polymer (GFRP) and polyurethane foam. The bridge deck consists of many unit cells with rectangular holes which are filled with the foam to improve its structural behavior in its weak axis. It is found that although the elastic modulus of the foam compared to that of the GFRP is about the order of, the structural behaviors in the weak axis such as nominal strength, stiffness, etc. are greatly improved. Owing to the low mass density of the foam used in this study, the bridge deck is still light enough with the improved structural properties. Webs of the cells filled with the foam did not significantly contribute to the strength development of the deck. However, the propagation of a crack initiated in a cell is caught by the webs and limited to the inside of that cell only, which makes the load-displacement behavior of the foam-filled GFRP deck less brittle.

Design and Full Size Flexural Test of Spliced I-type Prestressed Concrete Bridge Girders Having Holes in the Web (분절형 복부 중공 프리스트레스트 콘크리트 교량 거더의 설계 및 실물크기 휨 실험 분석)

  • Han, Man Yop;Choi, Sokhwan;Jeon, Yong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.235-249
    • /
    • 2011
  • A new form of I-type PSC bridge girder, which has hole in the web, is proposed in this paper. Three different concepts were combined and implemented in the design. First of all, a girder was precast at a manufacturing plant as divided pieces and assembled at the construction site using post-tensioning method, and the construction period at the site will be reduced dramatically. In this way, the quality of concrete can be assured at the manufacturing factory and concrete curing can be well controlled, and the spliced girder segments can be moved to the construction site without a transportation problem. Secondly, a numerous number of holes was made in the web of the girder. This reduces the self-weight of the girder. But more important thing related to the holes is that about half of the total anchorages can be moved from the girder ends into individual holes. The magnitude of negative moment developed at girder ends will be reduced. Also, since the longitudinal compressive stresses are reduced at ends, thick end diaphragm is not necessary. Thirdly, Prestressing force was introduced into the member through multiple stages. This concept of multi-stage prestressing method overcomes the prestressing force limit restrained by the allowable stresses at each loading stage, and maximizes the magnitude of applicable prestressing force. It makes the girder longer and shallower. Two 50 meter long full scale girders were fabricated and tested. One of them was non-spliced, or monolithic girder, made as one piece from the beginning, and the other one was assembled using post-tensioning method from five pieces of segments. It was found from the result that monolithic and spliced girder show similar load-deflection relationships and crack patterns. Girders satisfied specific girder design specification in flexural strength, deflection, and live load deflection control limit. Both spliced and monolithic holed web post-tensioned girders can be used to achieve span lengths of more than 50m with the girder height of 2 m.

A Study on the $SO_2/CO_2/N_2$ Mixed Gas Separation Using Polyetherimide/PEBAX/PEG Composite Hollow Fiber Membrane (Polyetherimide/PEBAX/PEG 복합 중공사막을 이용한 $SO_2/CO_2/N_2$ 혼합기체 분리에 관한 연구)

  • Hyung, Chan-Heui;Park, Chun-Dong;Kim, Kee-Hong;Rhim, Ji-Won;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.404-414
    • /
    • 2012
  • In order to investigate $SO_2$ removal, PEI hollow fiber membranes were produced by a dry-wet phase inversion method. The membrane support layer on surface was coated with PEBAX1657$^{(R)}$ and PEG blending materials. Modules were prepared for the single gas permeation characteristics of composite membrane according to temperature and pressure. As a result, $SO_2$ permeance and $SO_2/N_2$ selectivity were 220~1220 GPU and 100~506 through operating condition, respectively. Moreover, $SO_2/CO_2/N_2$ mixture gas was used to compare the performance of separation properties according to temperature, pressure and retentate flow rate difference. $SO_2$ removal efficiency was increased with pressure and temperature.

Nonlinear Impact Analysis for Eco-Pillar Debris Barrier with Hollow Cross-Section (중공트랙단면 에코필라 사방댐의 비선형 충돌해석)

  • Kim, Hyun-Gi;Kim, Bum-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.430-439
    • /
    • 2019
  • In this study, a nonlinear impact analysis was performed to evaluate the safety and damage of an eco-pillar debris barrier with a hollow cross-section, which was proposed to improve constructability and economic efficiency. The construction of concrete eco-pillar debris barriers has increased recently. However, there are no design standards concerning debris barriers in Korea, and it is difficult to find a study on performance evaluations in extreme environments. Thus, an analysis of an eco-pillar debris barrier was done using the rock impact speed, which was estimated from the debris flow velocity. The diameters of rocks were determined by ETAG 27. The impact position, angles, and rock diameter were considered as variables. A concrete nonlinear material model was applied, and the estimation of damage was done by ABAQUS software. As a result, the damage ratio was found to be less than 1.0 at rock diameters of 0.3 m and 0.5 m, but it was 1.39 when the diameter was 0.7 m. This study could be used as basic data on impact force in the design of the cross section of an eco-pillar debris barrier.