• Title/Summary/Keyword: 중간 금형 설계

Search Result 6, Processing Time 0.023 seconds

A research on the Automatic 3-D Blocker Design of Closed Die-Hot Forging (열간 형단조 공정의 3차원 중간 금형 자동 설계에 관한 연구)

  • Hwang, C.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.126-129
    • /
    • 1998
  • Proper design of blocker dies is one of the most important aspect of impression and closed-die forging to achieve adequate metal distribution. Determination of the blocker configuration is a very difficult task and is art in itself, requiring skills achieved only by years of extensive experience. To save the cost and time of blocker design, many methods using computer were proposed. In this research, low pass filter method proposed by Oh etc. was applied to blocker die design of spoiler support, part of aircraft and plasticine model experiment of closed die forging of spoiler support was accomplished to verify the validity of the blocker designed.

  • PDF

Development of Program for the Intermediate ie Design in the Drawing of the Rectangular Rod (직사각재 인발 공정의 중간 금형 설계 프로그램 개발)

  • 김동진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.95-98
    • /
    • 1999
  • In this study, a method to find the optimal intermediate die geometry for the multi-stage drawing process for the rectangular rod from a round bar is proposed and a program using the proposed method is developed. On the stage of the design of the intermediate die geometry, the virtual die was constructed using the initial billet as a inlet of the drawing die and the final product as a exit of that and the virtual die was divided by the number of pass. Divided die was transformed into the rectangular one which is the intermediate die geometry for the multi-stage rectangular drawing process. In order to verify the application of the proposed method on the real industrial product, the drawing of the rectangular rod from a round which composed two stage has been performed and simulated by the three dimensional rigid plastic finite element method.

  • PDF

A Study on the Process Planning and Die Design of Cold-Forging Using Personal Computer(I) (퍼스널 컴퓨터에 의한 냉간단조 공정 및 금형설계의 자동화에 관한 연구( I ))

  • 최재찬;김병민;진인태;김형섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.712-720
    • /
    • 1988
  • This paper describes some development of computer-aided system called "COLD-FORMING" and "DESIGN-DIE". "COLD-FORMING" is designed for the forming sequence and "DESIGN-DIE" for the die design of press forming rotationally symmetric parts. The computer program developed is used in interactive and written in BASIC. Design rules for process planning and die design are formulated from process limitations, plasticity theory and know-how of experience of the field. "COLD-FORMING" capabilities include (1) analysis of forming sequence and recognition of individual operation involved each step, (2) determination of intermediate shape and dimensions, (3) calculation of forming loads to perform each forming operation and (4) graphic out put for the operation sheet. "DESIGN-DIE" capabilities include (1) optimum die design corresponding to the output of "COLD-FORMING" and (2) graphic output for the die design.of "COLD-FORMING" and (2) graphic output for the die design.ie design.

Process and Die Design of Square Cup Drawing for Wall Thickening (사각형 판재성형 시 벽두께 증육을 위한 금형 및 공정 설계)

  • Kim, Jinho;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5789-5794
    • /
    • 2015
  • Recently, thin and light-weight production technologies are needed in IT industry in accordance with increase of the smart phones and mobile PC products. In order to make light and high rigidity products, engineering plastic and aluminum materials are frequently used in products appearance and frame hat support structure. Especially aluminum extrusion and CNC Brick processes are widely used for high strength and high rigidity technology. But extrusion method has constraints to apply exterior design and CNC Brick process has relatively high production cost and low speed of manufacturing. In this research, a new process method is introduced in order to reduce material cost and to improve manufacturing speed dramatically. Plate forging process means basically that thickening of local wall area thickness after deform exterior shape by deep drawing and bending process. Therefore, it is possible to minimize the waste of material and the manufacturing time. In this study the process of plate forging is designed using finite element program AFDEX-2D and the thickness and the width of initial deformed blank. And it is verified as a sample which is a part of laptop developed through the proposed plate forging method.

A Convergence Study through Durability Analysis due to the Configuration of Automotive Frame Butted (자전거 프레임 버티드 형상에 따른 내구성 해석을 통한 융합연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.271-276
    • /
    • 2018
  • When the driver riding in a bicycle goes on board, the load of driver is shown differently according to the position loaded on the frame of bicycle. The load is applied most at the joint of bike frame and the load at the mid-part of frame is applied least than the other parts. So, the weight of frame is decreased as the part not applied with a lot of load is manufactured into the thin thickness. As the part applied with high load is manufactured into the thick thickness, it can be endured through this load. The configurations of general frame, double butted and triple butted were modelled by using CATIA program. The durabilities of each model due to the load of passenger were investigated by carrying the structural and fatigue analyses. As this study result investigated with the analysis program of ANSYS, the deformation of general frame happened most and that of triple butted became least. These simulation analysis data are intended to be used to design the actual bicycle frame in the most efficient way at design and manufacture.

A Study on the Improvement of Injection Molding Process Using CAE and Decision-tree (CAE와 Decision-tree를 이용한 사출성형 공정개선에 관한 연구)

  • Hwang, Soonhwan;Han, Seong-Ryeol;Lee, Hoojin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.580-586
    • /
    • 2021
  • The CAT methodology is a numerical analysis technique using CAE. Recently, a methodology of applying artificial intelligence techniques to a simulation has been studied. A previous study compared the deformation results according to the injection molding process using a machine learning technique. Although MLP has excellent prediction performance, it lacks an explanation of the decision process and is like a black box. In this study, data was generated using Autodesk Moldflow 2018, an injection molding analysis software. Several Machine Learning Algorithms models were developed using RapidMiner version 9.5, a machine learning platform software, and the root mean square error was compared. The decision-tree showed better prediction performance than other machine learning techniques with the RMSE values. The classification criterion can be increased according to the Maximal Depth that determines the size of the Decision-tree, but the complexity also increases. The simulation showed that by selecting an intermediate value that satisfies the constraint based on the changed position, there was 7.7% improvement compared to the previous simulation.