• Title/Summary/Keyword: 중간냉각

Search Result 84, Processing Time 0.022 seconds

An Optimization Study on the NGL Recovery Process Using Turbo-expander (터보 팽창기를 활용한 NGL 회수공정 최적화에 대한 연구)

  • Kim, Yu-Mi;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1473-1478
    • /
    • 2011
  • In this study, simulation and optimization works for a demethanizer column have been performed to obtain ethane and heavier products from a pretreated natural gas stream. Pretreated natural gas feed stream is partially condensed after being precooled by exchanging heat with demethanizer top vapor stream and by using an external refrigeration cycle with a propane refrigerant. Vapor stream is furtherly cooled and partially condensed through a turbo-expander and the power generated from the expansion of turbo-expander was delivered to the compressor for the residue gas compression. Liquid stream is being cooled by Joule-Thomson expansion valve and is fed to the middle section of the demethanizer. Ethane recovery percent for feed natural gas was set to 75% and methane to ethane molar ratio was fixed as 0.015. Propane refrigeration heat duty was reduced by splitting the feed stream and to exchange heat with side reboiler.

Preliminary Leak-before Break Assessment of Intermediate Heat Transport System Hot-Leg of a Prototype Generation IV Sodium-cooled Fast Reactor (소듐냉각고속로 원형로 중간열전달계통 고온배관의 파단전누설 예비평가)

  • Lee, Sa Yong;Kim, Nak Hyun;Koo, Gyeong Hoi;Kim, Sung Kyun;Kim, Yoon Jea
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.126-133
    • /
    • 2016
  • Recently, the research and development of Sodium-cooled Fast Reactors (SFRs) have made progresses. However, liquid sodium, the coolant of an SFR, is chemically unstable and sodium fire can be occurred when liquid sodium leaks from sodium pipe. To reduce the damage by the sodium fire, many fire walls and fire extinguishers are needed for SFRs. LBB concept in SFR might reduce the scale of sodium fire and decrease or eliminate fire walls and fire extinguishers. Therefore, LBB concept can contribute to improve economic efficiency and to strengthen defense-in depth safety. The LBB assessment procedure has been well established, and has been used significantly in light water reactors (LWRs). However, an LBB assessment of an SFR is more complicated because SFRs are operated in elevated temperature regions. In such a region, because creep damage may occur in a material, thereby growing defects, an LBB assessment of an SFR should consider elevated temperature effects. The procedure and method for this purpose are provided in RCC-MRx A16, which is a French code. In this study, LBB assessment was performed for PGSFR IHTS hot-leg pipe according to RCC-MRx A16 and the applicability of the code was discussed.

High-Temperature Design of Sodium-to-Air Heat Exchanger in Sodium Test Loop (소듐 시험루프 내 소듐대 공기 열교환기의 고온 설계)

  • Lee, Hyeong-Yeon;Eoh, Jae-Hyuk;Lee, Yong-Bum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.665-671
    • /
    • 2013
  • In a Korean Generation IV prototype sodium-cooled fast reactor (SFR), various types of high-temperature heat exchangers such as IHX (intermediate heat exchanger), DHX (decay heat exchanger), AHX (air heat exchanger), FHX (finned-tube sodium-to-air heat exchanger), and SG (steam generator) are to be designed and installed. In this study, the high-temperature design and integrity evaluation of the sodium-to-air heat exchanger AHX in the STELLA-1 (sodium integral effect test loop for safety simulation and assessment) test loop already installed at KAERI (Korea Atomic Energy Research Institute) and FHX in the SEFLA (sodium thermal-hydraulic experiment loop for finned-tube sodium-to-air heat exchanger) test loop to be installed at KAERI have been performed. Evaluations of creep-fatigue damage based on full 3D finite element analyses were conducted for the two heat exchangers according to the high-temperature design codes, and the integrity of the high-temperature design of the two heat exchangers was confirmed.

The Criticality Analysis of Spent Fuel Pool with Consolidated Fuel in KNU 9 & 10 (조밀화 집합체로 중간저장하는 경우 원자력 발전소 9, 10호기의 사용 후 핵연료 저장조의 임계분석)

  • Jae, Moo-Sung;Park, Goon-Cherl;Chung, Chang-Hyun;Jang, Jong-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.27-34
    • /
    • 1988
  • Since the lack of the spent fuel storage capcity has been expected for all Korean nuclear power plants in the mid-1990s, the maximum density rack (MDR) with consolidated fuels can be proposed to overcome the shortage of the storage capacity in KNU 9 & 10 which have most limited capacities. To ensure the safety when the alternatives are applied in the KNU 9 & 10, the multiplication factor are calculated with varying the rack pitch and the thickness of consolidated storage box by the AMPX-KENO IV codes. The computing system is verified by the benchmark calculation with criticality experiments for arrays of consolidated fuel modules, which was reported by B & W in 1981. Also an abnormal condition, i.e. malposition accident, is simulated. The results indicate that the KNU 9 & 10 storage pools with consolidated fuel are safe in the view of the criticality. Thus the storage capacity can be expanded from 9/3 cores into 27/3 cores even with considering equipments and cooling spaces.

  • PDF

Performance Characteristics of Flooded Type Evaporator for Seawater Cooling System with Heat Source Temperature of Mid-year (중간기 열원수 온도에 따른 만액식 해수냉각시스템의 성능 특성)

  • Yoon, Jung-In;Son, Chang-Hyo;Lee, Jeong-Mok;Kang, In-Ho
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.64-69
    • /
    • 2017
  • The purpose of this study is to investigate the performance characteristics of seawater cooling system for a fishing vessel. The circulation amount of refrigerant, condensation capacity, evaporation capacity, compression work and coefficient of performance(COP) were analyzed as the heat source temperature changed. The experimental setup consisted of an open-type compressor, a shell&tube type condenser, an evaporator and an expansion valve. The heat source was controlled by a constant temperature chamber. The main results of this study are summarized as follows. The condensation capacity increased with increasing heat source temperature, and it was confirmed that the effect of circulating amount of refrigerant was dominant. The amount of heat for vaporization was almost constant even though the temperature of the heat source increased. On the other hand, the compression power was increased. This is because the compression ratio increases as the condensation pressure, the enthalpy difference between inlet and outlet, the amount of circulating refrigerant increases. The performance coefficient of this system showed a tendency decreasing with increasing heat source temperature. Therefore, the basic data of the seawater cooling system for the maintenance of the catch line of the shore fishing boats was acquired through this study, and it is considered that it will be sufficient for the actual design.

Evaluation of Structural Integrity of Crossover Leg Piping System with Dynamic Whip Restraints (원자로냉각재계통 중간배관과 동적거동 구속장치와의 접촉으로 인한 배관 건전성 평가)

  • Yang, J.S.;Kim, B.N.;Oh, S.K.;Oh, C.H.;Lee, D.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.636-643
    • /
    • 2001
  • Interference between the crossover leg of the reactor coolant system (RCS) and the pipe whip restraints (PWR) has brought a degradation issue of the integrity of the Reactor Coolant System in Westinghouse type nuclear power plants (NPPs) of Korea. According to the gap Inspect ion carried out during planned overhaul (Year 2000), interference between the crossover leg and the PWR was found in each RCS loop. This plant has had the high vibration problem on the RC pump 'B'. The reason for the high vibration in the RC pump 'B' had been massively surveyed and it was found that the crossover leg of RCS contacted with the PWR in hot condition. Since the contact between the crossover leg and the PWR changes the dynamic characteristics of the piping system for the RCS, this is considered as one reason for the high vibration. And a possibility of overstress on the crossover leg due to the contact with the PWR should be evaluated. Through performing RCS integrity analyses, subsequent actions were initiated to increase the gap between those parts. As the results of the appropriate separation between two parts, it was reported that there was no unusual noise or vibration during plant heat-up. In this paper, the evaluations for the gap between the crossover leg and the PWR and the structural integrity due to loop binding is described.

  • PDF

A Minerlogical Study of Plagioclase in Volcanic Rocks from the Mt. Mudeung Area (무등산지역 화산암류에서 산출되는 사장석의 광물학적 연구)

  • Park Byung-Kyu;Kim Yong-Jun;Kim Youn-Joong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.3 s.45
    • /
    • pp.155-164
    • /
    • 2005
  • Volcanic rocks from the Mt. Mudeung area which are composed of Hwasun andesite, Mudeungsan dacite and Togok rhyolite contain plagioclase phenocrysts in common. Majority of the repeated twins observed in optical microscopy are albite twin and some are pericline twin. EPMA studies of plagioclases from Hwansun andesite, Mudeungsan dacite and Togok rhyolte indicate calcic andesine, andesine-oligoclase, nearly pure albite, respectively Albite twin and pericline twin can be easily distinguished through TEM diffraction patterns, which is quite difficult by optical microscopy. Plagioclases in volcanic rocks from the Mt. Mudeung area do not show e-reflection in (100) electron diffraction patterns, probably because of their high cooling rate, which inhibited phase separations during cooling.

Moor Vegetation of Mt. Shinbul in Yangsan (양산 신불산의 습원 식생)

  • Kim, Jong-Won;Han, Seung-Uk
    • The Korean Journal of Ecology
    • /
    • v.28 no.2
    • /
    • pp.85-92
    • /
    • 2005
  • This study emphasizes syntaxonomy and syndynamics of intermediate (Zwischen) moor (area: 14,000 $m^2$) at Mt. Shinbul in Yangsan, southeastern Korean Peninsula. A total of 105 vascular plant species including 26 monitor-species were recorded. Analysis by the $Z\"{u}rich$-Montpellier School's method distinguished eight vegetation units: Eleocharitis-Blyxetum echinospermae ass. nov., Eriocaulon sikokianum-Utricularia racemosa community, Eleocharis wichurai-Molinia japonica community, Platanthero-Molinietum japonicas, Miscanthus sinensis for. purpurascens community, Tripterygium regelii community, Symplocos chinensis-Quercus mongolica community, Symplocos chinensis-Quercus dentata community. PCoA (Principal Coordinates Analysis) shows that vegetation changes and distributional aspects are associated with both moisture condition and sunlight on the ground layer and soil nutrient level (mesotrophic to oligotrophic). Most important to Molinietea japonicas being representative intermediate moor vegetation at the southeasternmost fringe of the Korean Peninsula is the local cooling effect by mountainous cloud and mist zone resulting in shorter and wetter growing season. The Yangsan moor vegetation was compared with earlier descriptions of related Mujechi moor from anthropogenic and natural moor vegetations.

Performance Analysis of 2-Stage Compression and 1-Stage Expansion Refrigeration System using Alternative Natural Refrigerants (암모니아 대체 자연냉매를 이용하는 2단압축 1단팽창 냉동시스템의 성능예측)

  • Roh, Geon-Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.42-47
    • /
    • 2012
  • In this paper, alternative natural refrigerant R290(Propane), R600(Butane), R717(Ammonia), R1270(Propylene) for freon refrigerant R22 were used working fluids for 2-stage compression and 1-stage expansion refrigeration system. The operating parameters considered in this study included evaporation temperature, condensation temperature, subcooling degree, superheating degree, mass flow rate ratio of inter-cooler. The main results were summarized as follows : The COP of 2-stage compression and 1-stage expansion refrigeration system increases with the increasing subcooling degree and mass flow rate ration of inter-cooler, but decreases with the increasing evaporating temperature, condensing temperature and superheating degree. Therefore, subcooling degree, mass flow rate ratio of inter-cooler of 2-stage compression and 1-stage expansion refrigeration system using natural refrigerants have an effect on COP of this system. The COP of natural refrigerants was higher than the COP of freon R22 in this study, so points to be considered are the security, the attached facilities for natural refrigerants than COP.

A Study on the Minimization of the Refrigeration Power Consumptions Through the Determination of Demethanizer Top Pressure in the NGL Recovery Process Using Turbo-expander (터보 팽창기를 활용한 NGL 회수공정에서 최적의 탈메탄탑의 운전압력 결정을 통한 냉동 소요동력 최소화에 대한 연구)

  • Kim, Yu-Mi;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1032-1037
    • /
    • 2011
  • In this study, simulation and optimization works for a demethanizer column have been performed to obtain ethane and heavier products from a pretreated natural gas stream. Pretreated natural gas feed stream was partially condensed after being precooled by exchanging heat with demethanizer top vapor stream and by using an external refrigeration cycle with a propane refrigerant. Vapor stream was cooled further and partially condensed through a turbo-expander. The power generated from the expansion of turbo-expander was delivered to the compressor for the residue gas compression. Liquid stream was cooled by Joule-Thomson expansion valve and was fed to the middle section of the demethanizer. Recovery percent of ethane for feed natural was set to 80% and methane to ethane molar ratio was fixed as 0.0119. On the other hand, some of the cold heat could be recovered by splitting the feed stream and by exchanging heat with side reboiler in order to reduce the heat duty in the propane refrigeration cycle.