• Title/Summary/Keyword: 줌궤적

Search Result 15, Processing Time 0.031 seconds

Numerical Calculation Method for Paraxial Zoom Loci of Complicated Zoom Lenses with Infinite Object Distance by Using Gaussian Bracket Method (가우스 괄호법을 이용한 무한 물점을 갖는 복잡한 줌 렌즈의 수치해석적인 근축광선 줌 궤적 추적법)

  • Yoo, Nam-Jun;Kim, Won-Seob;Jo, Jae-Heung;Ryu, Jae-Myung;Lee, Hae-Jin;Kang, Geon-Mo
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.410-420
    • /
    • 2007
  • We theoretically derive the set of utilizable paraxial zoom locus equations for all complicated zoom lens systems with infinite object distance, such as a camera zoom lens, by using the Gaussian bracket method and the matrix representation of paraxial ray tracing. And we make the zoom locus program according to these equations in Visual Basic. Since we have applied the paraxial ray tracing equations into Gaussian bracket representation, the resultant program systematically simplifies various constraints of the zoom loci of various N group types. Consequently, the solutions of this method can be consistently used in all types of zoom lens in the step of initial design about zoom loci. Finally, in order to verify the usefulness of this method, we show that one example among 4 groups and that among 5 groups, which are very complex zoom lens systems, can be rapidly and with versatility traced through various interpolations by using this program.

General Numerical Calculation Method for Paraxial Zoom Loci of Zoom Lenses with Finite Object Distance by Using Gaussian Bracket Method (가우스 괄호법을 이용한 유한 물점을 갖는 줌 렌즈에 대한 일반적인 수치해석적 근축광선 줌 궤적 추적)

  • Lee, Do-Kyung;Yoo, Nam-Jun;Jo, Jae-Heung;Ryu, Jae-Myung;Kang, Geon-Mo;Lee, Hae-Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.3
    • /
    • pp.156-165
    • /
    • 2009
  • We theoretically derive the set of general paraxial zoom locus equations for all zoom lens systems with finite object distance, including the infinite object distance case, by using the Gaussian bracket method and matrix representation of paraxial ray tracing. We make the zoom locus program by means of a numerical calculation method according to these equations in Visual Basic Language. Consequently, the solutions of this method can be consistently and flexibly used in all types of zoom lens in the step of initial design about zoom loci. Finally, in order to verify the justification and usefulness of this method, we show that two examples, such as $M_{4a}$ and $M_{4h}$ types of 4 groups, and one example, $M_{5n}$ type of 5 groups, which are very complicated zoom lens systems, can be rapidly and diversely traced through various interpolations by using this program.

Analytic Calculation Method of Zoom Loci for Zoom Lens System with Infinite Object Distance (무한물점용 줌 렌즈 광학계의 줌 궤적에 대한 해석적 계산법)

  • Oh, Jeong Hyo;Ryu, Jae Myung;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.3
    • /
    • pp.125-134
    • /
    • 2013
  • In case of the optical camera system with an infinite object distance, optical designs different from previous systems are required to speed up the auto-focus. As the number of lens groups is increased due to this, the conventional analytic method found it difficult to calculate the locus, and even the one-step advanced calculation method also had the trouble of taking a lot of time. In this paper, we suggested an analytic method for calculating the zoom loci by analyzing movement of one or two groups for situations corresponding to the given back focal length and effective focal length after taking a spline interpolation for each lens group. With this method, we would not only calculate the analytic zoom loci without iterations in every optical system without placing a limit on the group number at the zoom lens systems with the infinite object distance, but we would also show the utilities of this method through many examples.

Development of the 2~8X Zoom Beam Expander for the 1064 nm Laser Source (1064 nm 레이저 관원용 2~8X 줌 빔 확대기 개발)

  • Yi, Meyung-Ha;Lee. Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.2
    • /
    • pp.23-28
    • /
    • 2008
  • Purpose: To develop the 2~8X zoom beam expander for the 1064 nm laser source. Methods: After developing the program by which the initial design values of 3-component zoom tracks can be quickly obtaind, we design and develop the zoom beam expander by applying this program and the commercial program of Sigma 2000. Results: In this study, we could develop the program by which the initial design values of zoom tracks can be quickly obtaind, and by applying this program and the commercial program of Sigma 2000 we could design and develop the zoom beam expander for 1064 nm which is able to zoom from 2${\times}$ to 8${\times}$. The developed zoom beam expander has an efficient diameter of the incidence side of 8 mm, an efficient diameter of the exit side of 32 mm, and a capacity with the finite ray aberration within 0.0001rad. Because the overall length (OAL) is restricted between 125 mm and 135 mm, the change of the whole barrel length which is caused by variations of the zoom driving becomes to be within 10 mm. Conclusions: we could develop the program by which the initial design values of zoom tracks can be quickly obtaind, and by applying this program we could design and develop the zoom beam expander for 1064 nm which is able to zoom from 2${\times}$ to 8${\times}$.

  • PDF

Analysis and test of athermalizaion for 20:1 zoom thermal imaging system (20:1 줌 열영상 장비 비열화 분석 및 시험)

  • 김현숙;최세철;최세철;이국환;박용찬;김현규
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.4
    • /
    • pp.281-288
    • /
    • 2001
  • In this study we carried out athermalization analysis and tests to meet the required optical performance for thennal imaging systems even if the systems were operating over a wide temperature range. By using optical design programs such as Code- V and SIGMA2100, the simulation for athermalization was done with FPA thermal imaging system. In the athermalization test putting the thermal imaging system and collimator into a temperature chamber, the images depending on the temperature were recorded on video tape. In particular, the zoom thermal imaging system with two dimensional array detector was tested to check the result of the athermalization simulation. As a result, it was proved to meet the required optical performance for the thermal imaging system within $-32-+50^{\circ}C$ temperature range. range.

  • PDF

Zoom lens design for compact digital camera using lens modules (렌즈모듈을 이용한 컴팩트 디지털 카메라용 줌 렌즈 설계)

  • Park, Sung-Chan;Lee, Sang-Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.34-42
    • /
    • 2005
  • This paper presents the optimum initial design containing the first and third order properties of the three-group zoom system using lens modules, and the real lens design of the system. The optimum initial design with focal length range of 4.3 mm to 8.6 mm is derived by assigning appropriate first and third order quantities to each module along with the specific constraints required for the system. An initial real lens selected for each group has been designed to match its focal length and the first orders into those of the each lens modules, and then combined to establish an actual zoom system by adjusting the air space between the groups at all zoom positions. The combination of the separately designed groups results in a system which satisfies the first order properties of the zoom system composed of the original lens modules. As a result, by residual aberration correction, we could obtain a zoom system useful in compact digital zoom cameras and mobile phone cameras employing the rear focus method.

4 반사경 ANASTIGMAT 의 ZOOMING 에 관한 연구

  • 나승유;이상수
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1988.06a
    • /
    • pp.59-67
    • /
    • 1988
  • 연속적으로 aplanat 조건을 만족하는 4 반사경의 zooming에서 aplanat 4구면 반사광학계가 갖는 astigmatism을 줄이기 위하여 4구면 중 하나의 반사경에 원추곡면을 사용함으로써 줌 궤적상의 한점에서 anatsigmat 조건을 만족하도록 하였다. 이방법에 의한 astigmatism 의 보정효과는 제 1 면에 ellipsoid를 사용하였을 때 가장 우수하였다.

  • PDF

A Feature Tracking Algorithm Using Adaptive Weight Adjustment (적응적 가중치에 의한 특징점 추적 알고리즘)

  • Jeong, Jong-Myeon;Moon, Young-Shik
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.68-78
    • /
    • 1999
  • A new algorithm for tracking feature points in an image sequence is presented. Most existing feature tracking algorithms often produce false trajectories, because the matching measures do not precisely reflect motion characteristics. In this paper, three attributes including spatial coordinate, motion direction and motion magnitude are used to calculate the feature point correspondence. The trajectories of feature points are determined by calculation the matching measure, which is defined as the minimum weighted Euclidean distance between two feature points. The weights of the attributes are updated reflecting the motion characteristics, so that the robust tracking of feature points is achieved. The proposed algorithm can find the trajectories correctly which has been shown by experimental results.

  • PDF

The design of microscopic system using zoom structure with a fixed magnification and the independency on the variation of object distance (줌 구조를 이용하여 물체거리가 변해도 상면과 배율이 고정되는 현미경 광학계의 설계)

  • 류재명;조재흥;임천석;정진호;전영세;이강배
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.613-622
    • /
    • 2003
  • The multi-configurative microscopic system for inspecting the wire-bonding of reed frame is designed. Rays refracted by objective lens group which is composed of common lens group of x2 and x6 are splitted by beam-splitter, and Rays through the central region and the boundary region of the object imaged at x2 and x6 through imaging lens groups, respectively. The depth of wire structure on the reed frame has about $\pm$3 mm, in order to observe by uniform magnification without the dependency on the variation of objective distance generated by the depth of wire structure on the reed frame, imaging lens groups should be moved on nonlinear locus like mechanically compensated zoom lenses. The nonlinear equations for zoom locus are derived by using the Gaussian bracket. Refraction powers and positions of each groups are numerically determined by solving the equations, and initial design data for each groups is obtained by using Seidel third order aberration theory. The optimization technique is finally utilized to obtain this microscopic system.

Optical system design using lens modules I:optimum first order design in zoom lens (렌즈모듈을 이용한 광학계 설계 I: 줌렌즈의 First Order 최적설계)

  • 박성찬;김영식
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.81-87
    • /
    • 1997
  • This paper presents the optimum initial design containing the first and third order properties of the four-group video camera zoom system using lens modules, and its real lens design. The optimum initial design with focal length range of 6.1693 to 58.4065 mm is derived by assigning appropriate first order quantities and third order aberrations to each module along with the specific constraints required for optimization. By scaling the focal length of each lens group, an initial real lens selected for each group has been designed to match its focal length into that of the each lens module, and then combined to establish an actual zoom system by adjusting the air space between the groups at all zoom positions. The combination of the separately designed groups results in a system which satisfies the first order properties of the zoom system consisting of original lens modules. As a result, by residual aberration correction, we could obtain a zoom system useful in video zoom camera employing the rear focus method.

  • PDF