• Title/Summary/Keyword: 줄눈

Search Result 137, Processing Time 0.027 seconds

Wall-roughness effects of trapezoidal ribs on the flow of open channel (개수로 흐름에서 사다리꼴 돌출줄눈의 벽면조도 효과)

  • Shin, Seung Sook;Park, Sang Deog;Park, Ho Kook
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.255-264
    • /
    • 2019
  • The trapezoidal ribs had been installed in the retaining wall in order to reduce to flood damage in the impingement of mountain rivers. In this study, experiments in open channel with the trapezoidal ribs on sidewall were conducted to evaluate the effect of flow resistance by the trapezoidal shape. The hydraulic flow characteristics according to the flow rates were surveyed where the wall roughness is k-type that dimensionless spacings, ${\lambda}_{nv}$, are 6, 9, and 12. The flow-resistance factors such as roughness and friction coefficients increased generally with increase of the spacing of ribs. In high flow rate the friction coefficient showed the maximum value when ${\lambda}_{nv}$ is 9. Though the trapezoidal ribs has the relatively smaller flow resistance compared to the square ribs, their form drag accounted for mean 62% of the total flow resistance. It was confirmed that the optimal spacing of trapezoidal ribs to maximize the effect of flow resistance as the wall roughness increases are 9 to 12 times of the height of trapezoidal ribs.

Hydraulic Effect of Vertical-Strip Side Wall in Open Channel Flow (개수로 흐름에서 측벽 수직줄눈의 수리효과)

  • Park, Sang-Deog;Ji, Min-Gyu;Nam, A-Reum;Woo, Tae-Young;Yang, Eun-Ik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.700-700
    • /
    • 2012
  • 산지유역은 하천을 따라서 도로가 발달되어 있어서 대부분의 도로가 홍수시 하천의 영향을 많이 받는다. 산지하천은 경사가 급하고 만곡수충부가 많이 발달되어 있기 때문에 홍수시 유속이 빠르고 만곡수충부의 편수위가 매우 크다. 이는 만곡부 호안 파괴와 도로 유실의 피해를 일으키는 경우가 많다. 따라서 대부분의 산지하천 만곡수충부에는 홍수피해 방지를 위해 콘크리트 옹벽호안으로 되어 있다. 그러나 콘크리트 옹벽은 조도가 작기 때문에 유속이 더 빠르게 되고 편수위를 한층 증대시킬 수 있다. 산지하천 만곡수충부의 편수위를 줄이기 위해서는 접근유속을 줄여야 하나 산지하천 특성으로 볼 때 접근유속 저감을 위한 공학적 방법은 제한적이다. 따라서 만곡수충부의 유속을 줄이는 방법으로 콘크리트 옹벽호안의 조도계수를 증대시키는 것이 효과적일 수 있다. 본 연구에서는 개수로 측벽에 수직돌출줄눈이 설치되었을 때 흐름에 미치는 수리효과를 개수로 수리실험으로 파악하고자 한 것이다. 실험결과 돌출줄눈의 간격이 수직돌출줄눈의 무차원 폭이 9일 때 평균유속이 가장 작게 나타났다. 이는 돌출줄눈의 간격이 개수로 내부흐름의 유속분포, 최대유속발생 위치, 유수단 면적의 크기에 영향이 미치기 때문이다. 따라서 개수로 측벽 수직돌출줄눈의 간격을 조절함으로써 개수로 유수저항의 크기를 조절할 수 있다.

  • PDF

Development of Evaluation Method for Jointed Concrete Pavement with FWD and Finite Element Analysis (FWD와 유한요소해석을 이용한 줄눈콘크리트포장 평가법 개발)

  • Yun, Kyong-Ku;Lee, Joo-Hyung;Choi, Seong-Yong
    • International Journal of Highway Engineering
    • /
    • v.1 no.1
    • /
    • pp.107-119
    • /
    • 1999
  • The joints in the jointed concrete pavement provide a control against transverse or longitudinal cracking at slab, which may be caused by temperature or moisture variation during or after hydration. Without control of cracking, random cracks cause more serious distresses and result in structural or functional failure of pavement system. However, joints nay cause distresses due to its inherent weakness in structural integrity. Thus, the evaluation at joint is very important. and the joint-related distresses should be evaluated reasonably for economic rehabilitation. The purpose of this paper was to develop an evaluation system at joints of jointed concrete pavement using finite element analysis program, ILLI-SLAB, and nondestructive testing device. FWD. To develop an evaluation system for JCP, a sensitivity analysis was performed using ILLI-SLAB program with a selected variables which might affect fairly to on the performance of transverse joints. The most significant variables were selected from precise analysis. An evaluation charts were made for jointed concrete pavement by adopting the field FWD data. It was concluded that the variables which most significantly affect to pavement deflections are the modulus of subgrade reaction(K) and the modulus of dowel/concrete interaction(G), and limiting criteria on the performance of joints at JCP are 300pci. 500,000 lb/in. respectively. Using these variables and FWD test, a charts of load transfer ratio versus surface deflection at joints were made in order to evaluate the performance of JCP. Practically, Chungbu highway was evaluated by these evaluation charts and FWD field data for jointed concrete pavement. For Chungbu highway, only one joint showed smaller value than limiting criterion of the modulus of dowel/concrete interaction(G). The rest joints showed larger values than limiting criteria of the modulus of subgrade reaction(K) and the modulus of dowel/concrete interaction(G).

  • PDF

Development of Mechanistic-empirical Joint Spacing Design Method for Concrete Pavements (역학적-경험적 콘크리트 포장 줄눈간격 설계방법 개발)

  • Park, Joo-Young;Hong, Dong-Seong;Lim, Jin-Sun;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.51-59
    • /
    • 2011
  • Tensile stress occurs and random crack develops in concrete pavement slab when it contracts by variation of temperature and humidity. The tensile stress decreases and the random crack is minimized by sawcutting the slab and inducing the crack with regular spacing. The random crack, joint damage, decrease of load transfer efficiency are caused by too wide joint spacing while too narrow joint spacing leads to increase of construction cost and decrease of comfort. A mechanistic-empirical joint spacing design method for the concrete pavement was developed in this study. Structurally and environmentally weakest sections were found among the sections showing good performance, and design strengths were determined by finite element analysis on the sections. The joint width for which the load transfer efficiency is suddenly lowered was determined as allowable joint with referring to existing research results. The maximum joint spacing for which the maximum tensile stress calculated by the finite element analysis did not exceed the design strength were found. And the maximum joint width expected by the maximum joint spacing were compared to the allowable joint width. The new method developed in this study was applied to two zones of Hamyang-Woolsan Expressway being designed. The same joint spacing as a test section constructed by 8.0m of joint spacing wider than usual was calculated by the design method. Very low cracking measured at 6 years after opening of the test section verified the design method developed in this study.

Sensitivity Analysis of Load Trunsfer of Jointed Concrete Pavements Using 3-D Finite Element Model (3차원 유한요소 모형를 이용한 줄눈 콘크리트포장 하중전달의 민감도 분석)

  • Sun, Ren-Juan;Lim, Jin-Sun;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.145-157
    • /
    • 2008
  • Load transfer efficiency (LTE) reflects the structural performance of doweled and undoweled joints of Jointed Concrete Pavement (JCP). A 3-dimensional (3-D) model of JCP was built using ABAQUS software in this study. Three concrete slabs were placed on bonded sublayers composed of a base and subgrade. Spring elements were used to connect the adjacent slabs at joints. Different spring constants were input to the model to simulate different joint stiffness of the concrete pavement. The LTE of the joint increased with an increase of the spring constant. The effects of material properties and geometric shape on the behavior of JCP were analyzed using different elastic modulus and thickness of the slab and base in the modeling. The results showed the elastic modulus of the subgrade affected the behavior of the slab and LTE more than that of the base and the thickness of the slab and base. The effects of a negative temperature gradient on the behavior of the slab and LTE were more than that of positive and zero temperature gradients. Joints with low stiffness were more sensitive to the temperature gradient of the slab.

  • PDF

Development of Analytical Model for Cement Concrete Pavements Considering Joint Behavior (줄눈부의 거동을 고려한 시멘트콘크리트 포장체의 해석모델 개발)

  • 변근주;이상민;임갑주
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.4
    • /
    • pp.91-98
    • /
    • 1990
  • Joints are provided in cement concrete pavements to control transverse and longitudinal cracking that occur due to restrained deformations caused by moisture and temperature variations in the slab. But the constuction of joints reduces the load-carrying capacity of the pavement at the joints, and pavements have been deteriorated by cracks at the slab edges along the joints due to traffic loads. Therefore, it is important to analyze the behavior of joints accurately in the design of cement concrete pavements. In this study, the mechanical behavior of cement concrete pavement slabs is analyzed by the plate-finite element model, and Winkler foundation model is adopted to analyze the subgrades. The load transfer mechan¬ism of joints are composed of dowel action, aggregate interlocking, and tied-key action, and the analytical pro¬gram is developed using these joint models. Using this numerical model as an analysis tool, the effects of joint parameters on the behavior of pavements are investigated.

Flow Resistance of Vertical Rib Sidewall in Open Channel (개수로 측벽 세로돌출줄눈의 흐름저항)

  • Park, Sang Deog;Ji, Min Gyu;Nam, A Reum;Woo, Tae Young;Shin, Seung Sook
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.9
    • /
    • pp.947-956
    • /
    • 2013
  • Most of flood protection walls built on the impingement in mountain rivers have been made of concrete. It may cause flood disasters because the smooth wall surface could increase flow velocity. In this study the hydraulic experiments was carried out to evaluate the effect of one side wall with rectangular vertical ribs on flow resistance in open channel. The ratio of the pitch between vertical ribs to its depth, ${\lambda}_{nv}$, was designed so that it include the so-called d type and k type roughness. The range of Froude number, $F_r$, based on hydraulic radius is 0.81~1.12. Flow resistance in the open channel with a rib sidewall depends on the interval length of each ribs and the flow discharge. Maximum flow resistance occurred when ${\lambda}_{nv}$ is 9. In the d type roughness which ${\lambda}_{nv}$ is less than 3, the flow resistance decreases with increase of flow discharge. In the k type roughness which ${\lambda}_{nv}$ is greater than 3, the flow resistance increases with increase of flow discharge. The increments of flow resistance are especially great when ${\lambda}_{nv}$ are 9 and 12. The resistance due to vertical rib is mostly by the shape resistance and the vertical rib on one sidewall of open channel affects on the flow resistance so that the equivalent roughness heights of vertical rib may occur in scale of flow depth. Therefore the vertical ribs may be used to reduce the flow velocity and to move the location of maximum flow velocity from the rib sidewall to the centerward in a cross section of channels.

Effect of Temperature on Joint Movement of JPCP at Its Early Age (재령초기 콘크리트포장 줄눈거동에 미치는 온도의 영향)

  • Choi, Ki-Hyo;Jeong, Jin-Hoon;Chun, Sung-Han;Park, Moon-Gil
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.340-343
    • /
    • 2007
  • The temperature variation of concrete pavement at early-age significantly affects the initiation and movement of joint cracks. For this analysis, we have built on IIA(Incheon International Airport) concrete pavement construction zone, and we measured the temperature and movement of the concrete slabs by using thermocouples, moisture sensors, V/W strain gages, and Demac discs. The analysis results showed that pavement's temperature significantly affected the joint movement. The widths of the joint cracks increased at evening and early in the morning when the temperature dropped but, those decreased in the day time when the temperature rose because of the effect of thermal expansion of the concrete slabs. The movements of the joints where the cracks never developed showed opposite trend to the cracked joints.

  • PDF

Evaluation of Endurance for Roadway Sealant (도로용 줄눈재의 내구성 평가)

  • Lee, Hyoung-Wook;Kim, Seung-Jin
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.133-139
    • /
    • 2009
  • Joints on concrete road prevent failure and crack securing the moderate space when concrete slab expands and contracts as a function of varying temperature throughout all seasons. Filling joint sealants in joints can prevent the interruption of slab movement and failure due to the infiltration of alien substances, and also can prevent crack caused by freezing and thawing and Dowel bar corrosion resulted from water - rainfall and snowfall infiltration through the inside the pavement. They lead to the improvement of the commonality of road. This paper evaluates physical strength, weatherability and deicer resistance of a two-year aged sample from joint on concrete road and its virgin sample. It was found that there are significant differences in aspects of weatherability and adhesive force between the tested sample and silicon materials.

  • PDF