• Title/Summary/Keyword: 줄기밀도

Search Result 84, Processing Time 0.034 seconds

Development of Wheat-Leymus Addition Line with Salt Tolerance throgh Wide-hybridization (국내 자생 갯그령(Leymus mollis)의 환경 적응성 강화 밀 자원 소재 개발을 위한 이용 가치)

  • Seong-Wook Kang;Ji-Yoon Han;Seong-Woo Cho
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.37-37
    • /
    • 2022
  • 밀은 세계 3대 작물로 국내 1인당 소비량은 지속적으로 증가하고 있다. 하지만 국내 밀의 유전적 배경 확대와 기후변화 신속 대응을 위한 국내 밀 유전자 풀의 확장은 밀의 질적 향상을 위해 매우 중요한 목표이다. 국내 자생 갯그령(Leymus mollis)은 해안가에서 번식하는 영년생 식물로 뿌리줄기를 이용한 왕성한 번식력을 가지고 있다. 또한, 해안가의 뜨겁고 염에 대한 적응성과 저항성을 가지고 있다. 이러한 특성은 밀 유전자 풀의 확장에 매우 유용할 것이다. 국내 밀 재배지 한계 극복을 위한 간척지 재배가 가능한 내염성 강화 밀 자원 개발을 위하여 모본인 보통 밀(Triticum aestivum L., Chinese Spring)과 부본인 갯그령을 원연교배하였다. 갯그령과 보통 밀의 원연 교배를 통한 종자 형성은 매우 어려우나 불가능한 것은 아니며, 최종적으로 10개의 교배 종자를 얻어 F1 식물체로 생장하는 과정에서 5 식물체는 고사하였고, 나머지 5 식물체는 영년생 특성인 뿌리줄기에 의해 새로운 줄기가 출현하는 것을 확인하였다. 또한, 갯그령의 DNA를 이용한 genomic in situ hybridization 방법으로 F1 식물체에서 갯그령의 염색체가 밀의 유전적 배경에 이입된 것을 확인하였다. F2 식물체는 모본인 보통 밀보다 긴 수장과 간장을 나타내고 이삭 수는 많았지만, 출수기는 보통 밀보다 3주 이상 늦어지는 것을 확인하였다. 내염성 평가를 위하여 F2 종자를 2% 소금물에서 발아시켜 생육이 좋은 식물체를 선발하여 50 cm 투명 아크릴 원통에 이식하고 2% 소금물을 지속적으로 관개하였다. 내염성 강화 F2 식물체는 염에 감수성을 보인 식물체에 비하여 상대적으로 긴 이삭과 종자 형성을 보였으며, 감수성 식물체는 종자 형성이 이루어지지 않았다. 또한, 내염성 강화 F2 식물체는 감수성 식물체에 비하여 좋은 뿌리의 신장과 천근성을 보였다. 이러한 갯그령의 식물학적 특성이 이입된 계통은 기후변화 대응, 환경 적응성 강화, 및 근권 강화에 좋은 작물 소재로 이용할 수 있다고 생각한다.

  • PDF

Aboveground Biomass Estimation of Pinus rigida Stands in Muju Region (무주지역 리기다소나무 임분의 지상부 바이오매스 추정)

  • Seo, Yeon-Ok;Lee, Young-Jin
    • Journal of agriculture & life science
    • /
    • v.45 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • The objective of this study was to develop allometric equations and stem density and biomass expansion factor for Pinus rigida stands in Muju region. The coefficient of determination of the allometric equations in independent variable (dbh) and dependent variable (biomass) was more than 95% with the exception of leaf (78%) and branch(83%). The total biomass was $102Mg\;ha^{-1}$ ($65.9 Mg\;ha^{-1}$ from stem wood, $9.5Mg\;ha^{-1}$ from stem bark, $19.6Mg\;ha^{-1}$ from branch and $7.0Mg\;ha^{-1}$ from leaf). Biomass distribution ratio of Pinus rigida stands showed the highest in stem wood with 64.6%, followed by the branch with 19.2%, stem bark with 9.3% and the leaf with 6.9%. The results indicated that the stem density $(g/cm^{3})$ and the biomass expansion factor were 0.453 and 1.344, respectively.

Chemical Properties of Hot Water Extracts from Bamboos(Phyllostuhys sp.) (대나무 열수추출물의 화학적 특성)

  • 김낙구;조숙현;이상대;류재산;심기환
    • Food Science and Preservation
    • /
    • v.8 no.4
    • /
    • pp.469-474
    • /
    • 2001
  • Chemical composition of the water extract of three different kinds of bamboos was investigated to access nutritive sources. Bamboo stalks and leaves were extracted massively and concentrated to 3°Brix, and crude protein and fat contents of the extracts were respectively 0.56∼0.69% and 0.28∼0.58%. Main mineral contents of the extracts were K, P and Mg in order, and those were the highest in Wangdae stalks. In free sugar analysis of the extracts, Maengjongjuk stalks contained 1.1% sucrose, Somdae stalks contained 0.51% fructose and Wangdae stalks contained 0.6% glucose as the highest level. Organic acid contents of the extracts showed high level in acetic and malic acid which were 54.0 and 44.2mg% in extracts of Wangdae stalks respectively. Among amino acids, aspartic acid was contained the highest level in stalk extracts, and their concentrations were 42.2, 39.9 and 34.6mg% in Wangdae, Somdae and Maengjongjuk respectively. In leaf extracts, glutamic acid concentrations were higher than the other amino acids, and those were 19.3, 18.5 and 15.7mg% in Maengjongjuk, Wangdae and Somdae, respectively.

  • PDF

Bootstrap Evaluation of Stem Density and Biomass Expansion Factors in Pinus rigida Stands in Korea (부트스트랩 시뮬레이션을 이용한 리기다소나무림의 줄기밀도와 바이오매스 확장계수 평가)

  • Seo, Yeon Ok;Lee, Young Jin;Pyo, Jung Kee;Kim, Rae Hyun;Son, Yeong Son;Lee, Kyeong Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.535-539
    • /
    • 2011
  • This study was conducted to examine the bootstrap evaluation of the stem density and biomass expansion factor for Pinus rigida plantations in Korea. The stem density ($g/cm^3$) in less than 20 tree years were 0.460 while more than 21 tree years were 0.456 respectively. Biomass expansion factor of less than 20 years and more than 21 years were 2.013, 1.171, respectively. The results of 100 and 500 bootstrap iterations, stem density ($g/cm^3$) in less than 20 years were 0.456~0.462 while more than 21 years were 0.457~0.456 respectively. Biomass expansion factor of less than 20 years and more than 21 years were 1.990~2.039, 1.173~1.170, respectively. The mean differences between observed biomass factor and average parameter estimates showed within 5 percent differences. The split datasets of younger stands and old stands were compared to the results of bootstrap simulations. The stem density in less than 20 years of mean difference were 0.441~1.049% while more than 21years were 0.123~0.206% respectively. Biomass expansion factor in less than 20 years and more than 21 years were -1.102~1.340%, -0.024~0.215% respectively. Younger stand had relatively higher errors compared to the old stand. The results of stem density and biomass expansion factor using the bootstrap simulation method indicated approximately 1.1% and 1.4%, respectively.

Growth and Quality Changes of Creeping Bentgrass by Application of Liquid Fertilizer Containing Silicate (규산 함유 액상비료 시비에 따른 크리핑 벤트그래스의 생육과 품질 변화)

  • Kim, Young-Sun;Lee, Chang-Eun;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.5 no.3
    • /
    • pp.170-176
    • /
    • 2016
  • Superintendents have used a silicate fertilizer to improve a resistance of turfgrass against several diseases, drought damage and wear stress. This study was conducted to evaluate the effect of liquid fertilizer containing silicate (LFSi) on changes of turfgrass quality and growth by investigating visual quality, chlorophyll content-chlorophyll a, chlorophyll b, and total chlorophyll, root length, shoot length, dry weight of clipping, and nutrient content in leaves tissue. Treatments were designed as follows; control fertilizer (CF), SiF-1 (CF + $1ml\;m^{-2}$ LFSi), SiF-2 (CF + $2ml\;m^{-2}$ LFSi), and SiF-3 (CF + $4ml\;m^{-2}$ LFSi). As compared with CF, soil chemical properties, visual turfgrass quality, chlorophyll content, and dry weight of clipping of LFSi treatments were not significantly. Contrastingly, shoot density, root length, and the content of nitrogen or potassium were increased by application of LFSi. The content of Si in the tissue was positively correlated with potassium content or shoot length, and similarly shoot density positively with chlorophyll content or visual quality, respectively. These results suggested that the application of LFSi improved the turfgrass quality by increasing shoot density or K content in leaf tissue of creeping bentgrass.

Biomass and Net Primary Production of Pinus densiflora Stands in Gochang regions (고창지역 소나무림의 바이오매스 및 순생산량에 관한 연구)

  • Seo, Yeon-Ok;Lee, Young-Jin
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.45-53
    • /
    • 2010
  • This study was conducted to examine the biomass and net primary production, stem density and biomass expansion factors of Pinus densiflora in Gochang regions. The mean age of Pinus densiflora in both stands was 10 and 48 years. The dry weights (kg/tree) and aboveground biomass (Mg/ha) were 8.59 and 17.55 for 10 years young stand, 166.66 and 122.05 for 48 years old stand. The total biomass (Mg/ha) including the above and belowground were 21.48 and 154.16 in both age stands. The proportion of stem biomass, stem bark biomass and root biomass increased from the young stand to the old stand while on the leaf biomass and branch biomass, tend to decreased. The net primary production of aboveground biomass (Mg/ha) and belowground biomass were 6.30~6.95 for the young stand and 11.61~13.19 for old stand. The stem density ($g/cm^3$) was 0.338 for young stand while on the other hand, 0.448 for old stand was observed. The above and total biomass expansion factors were 2.304~2.508 and 1.318~1.644 in each age stands, respectively.

Biomass Expansion Factors, Allometric Equations and Stand Biomass of Pinus thunbergii in Southern Korea (전남 여수지역 곰솔의 현존량 확장계수, 상대생장식 및 임분 현존량)

  • Park, In-Hyeop;Kim, So-Dam
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.5
    • /
    • pp.507-512
    • /
    • 2018
  • Three natural Pinus thunbergii stands in southern Korea were studied to investigate stem density, biomass expansion factors, allometric equations and stand biomass. Stand ages of stand 1, 2 and 3 were 15, 29 and 45 years old, respectively. Three $10m{\times}10m$ plots were set up, five sample trees were cut and roots of three sample trees were excavated for dimension analysis in each stand. Stem density of stand 1, 2 and 3 were $0.450g/cm^3$, $0.440/cm^3$ and $0.457g/cm^3$, respectively, and there was no significant difference among the three stands. Biomass expansion factors of above-ground and total tree decreased with increasing stand age. Above-ground biomass expansion factor of stand 1 was significantly higher than those of stand 2 and 3, and total tree biomass expansion factor of stand 1 was significantly higher than that of stand 3. Allometric equations were developed for the 15 sample trees of the three stands based on D or $D^2H$. Above-ground biomass of stand 1, 2 and 3 were 50.72t/ha, 89.92t/ha, 194.07t/ha, respectively, and total tree biomass of stand 1, 2 and 3 were 61.62t/ha, 113.12t/ha, 248.36t/ha, respetively.

Allometric Equations and Biomass Expansion Factors in an Age-sequence of Black Pine (Pinus thunbergii) Stands (곰솔임분의 임분연령별 상대생장식 및 현존량 확장계수)

  • Kim, Choonsig;Lee, Kwang-Soo;Son, Young-Mo;Cho, Hyun-Seo
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.543-549
    • /
    • 2013
  • This study was conducted to evaluate age-specific and generalized allometric equations and biomass expansion factors (BEFs) for each tree component across three age-sequence stands (35-year-old, 51-year-old, 62-year-old) of black pine (Pinus thunbergii Parl.) in Jinju, located in the western part of Gyeongnam province, Korea. Biomass in each tree component, i.e. foliage, branch, and stem, was quantified by destructive tree harvesting. Allometric regression equations were significant (P<0.05) with diameter at breast height (DBH) or combination of DBH and height ($DBH^2H$) accounting for 55-98% of the variation (as indicated by coefficients of determination, $R^2$) in aboveground biomass except for foliage biomass of the 62-year-old stand. Generalized allometric equations can be used to estimate the biomass of black pine stands because the slopes of age-specific equations over 35-year-old stands were not significantly different by the age-sequence. The stem density and biomass expansion factor (BEFs) were not significantly different (P>0.05) from different stand ages and ranged from 0.45 to $0.51gcm^{-3}$, and from 1.32 to 1.38, respectively. The results indicate that allometric equations, stem density and aboveground BEFs in the matured black pine over 35-year-old are little influenced by different stand ages.

Above-and Belowground Biomass and Net Primary Production for Pinus densiflora Stands of Cheongyang and Boryeong Regions in Chungnam (충남 청양, 보령지역 소나무림의 지상부와 지하부 바이오매스 및 순생산량에 관한 연구)

  • Seo, Yeon-Ok;Lee, Young-Jin;Pyo, Jung-Kee;Kim, Rae-Hyun;Son, Yeong-Mo;Lee, Kyeong-Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.6
    • /
    • pp.914-921
    • /
    • 2010
  • This study analyzed the above-and belowground biomass, net primary production, stem density, and biomass expansion factors for Pinus densiflora stands of Cheongyang and Boryeong regions in Chungnam. The total dry weights in Cheongyang and Boryeong regions were 122.36 kg/tree and 137.68 kg/tree while the aboveground biomass for these two regions were 72.23 Mg/ha and 143.27 Mg/ha, respectively. Total(above-and belowground) biomass were 91.77 Mg/ha and 178.98 Mg/ha, respectively. Net primary production of above-and belowground biomass in Cheongyang and Boryeong regions were 8.69 Mg/ha, 10.03 Mg/ha, 16.00 Mg/ha and 18.66 Mg/ha, respectively. Stem density (g/$cm^3$) was 0.457 and 0.421 while the above and total biomass expansion factors were 1.394~1.662 and 1.324~1.639, respectively. These results suggested that stand density and site quality could be influenced on the biomass and net primary production of the two regions. In addition, the results of this study could be very useful to calculate carbon sequestrations by applying stem density values and biomass expansion factors for Pinus densiflora in these two regions.