• Title/Summary/Keyword: 줄기공동화

Search Result 4, Processing Time 0.018 seconds

Effect of Planting Density and a Silicate Fertilizer on Strength of Stem in Chrysanthemum 'Baekma' (국화 'Baekma' 줄기경도에 미치는 재식밀도와 규산질비료 엽면시비 효과)

  • Choi, Seong Youl;Lee, Young Ran;Hur, Eun Joo;Shin, Hak Ki
    • FLOWER RESEARCH JOURNAL
    • /
    • v.17 no.3
    • /
    • pp.147-151
    • /
    • 2009
  • The research was carried out a solution to prevent the breakage of stem resulted from stem cavity in the Dendranthema grandiflorum Ramat. 'Baekma'. Stem cavity occurred in the lower parts of stem for about 5 cm long as the stem grew to 20 cm, and the breakage increased to about 60 cm as the stem grew to 80 cm. Plant height, stem diameter, and flower stalk length were the highest in the planting density of $11cm{\times}11cm$. The light interception by plants increased as the planting density decreased (47, 99 and 143%). The strength and hardness values were the greatest, $567kg{\cdot}cm^{-2}$ and $1,339kg{\cdot}cm^{-2}$ in the planting density of $11cm{\times}11cm$. Plant height and plant weight increased in the foliage fertilization of one time, but the plants in the control flowered earlier. The strength and hardness increased in the foliage fertilization treatments and the greatest in the treatment of one time application of $60mg{\cdot}L^{-1}$ Silicate fertilization. The Si content of stems increased as the fertilization concentration and treatment time increased. The Si content in $30mg{\cdot}L^{-1}$ silicate treated twice was two times as high as that of the control.

Reduction of Stem Cavity and Improvement of Flower Quality in Chrysanthemum 'Baekma' by Hydroponic Culture (양액재배에 의한 국화 '백마'의 줄기공동 경감과 절화품질 향상)

  • Hwang, In Taek;Cho, Kyung Chul;Kim, Hee Gon;Ki, Gwang Yeon;Yoon, Bong Ki;Kim, Jung Guen;Lim, Jin Hee;Choi, Sung Ryul;Shin, Hak Ki
    • FLOWER RESEARCH JOURNAL
    • /
    • v.17 no.4
    • /
    • pp.251-255
    • /
    • 2009
  • This study was conducted to investigate effect of ionic strength and feeding times of a nutrient solution on reduction of stem cavity size and improvement of flower quality in chrysanthemum 'Baekma'. A nutrient solution was applied with different strengths at three stages, namely, transplanting, budding, and flowering. The solution EC was adjusted as 1.61.82.0, 1.81.81.8, 1.82.01.8, and $2.02.02.0dS{\cdot}m^{-1}$ in four treatments. Feeding frequency per a day were 4 times for 12 min., 8 times for 6 min., 12 times for 4 min., and 18 times for 2.7 min. each. Cut flower length as affected by different strengths of a nutrient solution was the greatest in the plot of EC $2.02.02.0dS{\cdot}m^{-1}$. However number of leaves, stem diameter, and leaf size were greater in EC $1.82.01.8dS{\cdot}m^{-1}$ than in other treatments. Also, petal number of petals was the greatest and stem cavity size was the smallest in the plot of EC $1.81.81.8dS{\cdot}m^{-1}$. Plant height, number of leaves, stem diameter, leaf size were greater in the plot with 12 times feed ing per a day. number of petal was most in the plot with 8 times feeding per day, while stem cavity size was the smallest in the plot with 12 times feed ing per a day. Therefore, the better plant growth, the smaller stem cavity size.

Reduction of Stem Inside-cavity and Improvement of Flower Quality in Chrysanthemum 'Baekma' by pH Stabilization and Foliar Spray of Ethephon (양액 pH 안정화와 에세폰 살포에 의한 국화 '백마'의 줄기동공 경감과 절화품질 향상)

  • Hwang, In Taek;Cho, Kyung Chul;Kim, Hee Gon;Ki, Gwang Yeon;Yoon, Bong Ki;Choi, Kyung Ju;Lim, Jin Hee;Choi, Sung Ryul;Shin, Hak Ki
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.4
    • /
    • pp.238-243
    • /
    • 2010
  • This study was conducted to investigate effects of nutrient solution pH control agent and foliar spray of ethephon on the reduction of stem inside-cavity and improvement of flower quality in chrysanthemum 'Baekma'. Changes of pH in nutrient solution as affected by the kind of pH control agent showed more settled pattern in the plot of KOH treatment than in others. Plant growth and development such as cut flower length, leaf numbers, cut flower weight and petal number were the greatest in the plot of KOH. However, the size and area of stem cavity was large in KOH rather than $KHCO_3$. As changes in the absorbing patterns of mineral elements as affected by nutrient solution pH control agent in closed system, contents of total nitrate, phosphorus, potassium and calcium by $KHCO_3$ was absorbed into the plant less than KOH, so that it remained a lot of mineral element residues rather than KOH in closed system. Plant growth as affected by the foliar spray of ethephon showed growth retardation effect in the plot of solution diluted to 1 : 500 and growth promotion effect in the plot of solution diluted to 1 : 1,000 or 1 : 2,000. The number of petals was the best in the plot of foliar spray of ethephon solution diluted to 1 : 1,000 before flowering at 45 days showing 331 petals compared to control showing 302 petals. The size and area of stem cavity as affected the foliar spray of ethephon was smaller 1 mm and 7%, respectively, in the plot of solution diluted to 1 : 2,000 before flowering at 30 days than in control. Therefore, treating pH stabilization using KOH after floral initiation stage with the foliar spray of ethephon solution diluted to 1 : 2,000 before flowering at 30 days would help to reduce stem cavity size and improve flower quality in hydroponically grown chrysanthemum 'Baekma'.

Deterioration Diagnosis and Source Area of Rock Properties at the West Stone Pagoda, Gameunsaji Temple Site, Korea (감은사지 서탑의 풍화훼손도 진단 및 석재의 산지추정)

  • Lee Chan Hee;Lee Myeong Seong;Suh Mancheol;Choi Seok-Won;Kim Man Gap
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.569-583
    • /
    • 2004
  • The rock properties of the West pagoda in the Gameunsaji temple site are composed mainly of dark grey porphyritic granodiorite with medium grained equigranular texture and developed with small numerous dioritic xenoliths. These xenoliths occurred with small holes due to different weathering processes. As a weathering results, the rock properties of this pagoda occur wholly softened to physical hardness because of a complex result of petrological, meteorological and biological causes. Southeastern part of the pagoda deteriorated seriously that the surface of rock blocks showed partially exfoliations, fractures, open cavities in course of granular decomposition of minerals, sea water spray and crystallization of salt from the eastern coast. The Joint between blocks has small or large fracture cross each other, contaminated and corrupted for inserting with concrete, cement mortar, rock fragments and iron plates, and partially accelerated coloration and fractures. There are serious contamination materials of algae, fungus, lichen and bryophytes on the margin and the surface on the roof stone of the pagoda, so it'll require conservation treatment biochemically for releasing vegetation inhabiting on the surface and the discontinuous plane of the blocks because of adding the weathering activity of stones and growing weeds naturally by soil processing on the fissure zone. Consisting rock for the conservation and restoration of the pagoda would be careful choice of new rock properties and epoxy to reinforce for the deterioration surfaces. For the attenuation of secondary contamination and surface humidity, the possible conservation treatments are needed.